Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 108(46): 18843-8, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21976485

RESUMO

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene that impair the function of CFTR, an epithelial chloride channel required for proper function of the lung, pancreas, and other organs. Most patients with CF carry the F508del CFTR mutation, which causes defective CFTR protein folding and processing in the endoplasmic reticulum, resulting in minimal amounts of CFTR at the cell surface. One strategy to treat these patients is to correct the processing of F508del-CFTR with small molecules. Here we describe the in vitro pharmacology of VX-809, a CFTR corrector that was advanced into clinical development for the treatment of CF. In cultured human bronchial epithelial cells isolated from patients with CF homozygous for F508del, VX-809 improved F508del-CFTR processing in the endoplasmic reticulum and enhanced chloride secretion to approximately 14% of non-CF human bronchial epithelial cells (EC(50), 81 ± 19 nM), a level associated with mild CF in patients with less disruptive CFTR mutations. F508del-CFTR corrected by VX-809 exhibited biochemical and functional characteristics similar to normal CFTR, including biochemical susceptibility to proteolysis, residence time in the plasma membrane, and single-channel open probability. VX-809 was more efficacious and selective for CFTR than previously reported CFTR correctors. VX-809 represents a class of CFTR corrector that specifically addresses the underlying processing defect in F508del-CFTR.


Assuntos
Aminopiridinas/uso terapêutico , Benzodioxóis/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Mutação , Brônquios/citologia , Linhagem Celular , Células Cultivadas , Química Farmacêutica/métodos , Cloretos/química , Fibrose Cística/genética , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Células Epiteliais/citologia , Homozigoto , Humanos , Técnicas In Vitro , Pulmão/patologia , Modelos Genéticos
2.
Drug Metab Dispos ; 39(9): 1568-76, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21673132

RESUMO

In the present study, the diversity of a library of drug-metabolizing bacterial cytochrome P450 (P450) BM3 mutants was evaluated by a liquid chromatography-mass spectrometry (LC-MS)-based screening method. A strategy was designed to identify a minimal set of BM3 mutants that displays differences in regio- and stereoselectivities and is suitable to metabolize a large fraction of drug chemistry space. We first screened the activities of six structurally diverse BM3 mutants toward a library of 43 marketed drugs (encompassing a wide range of human P450 phenotypes, cLogP values, charges, and molecular weights) using a rapid LC-MS method with an automated method development and data-processing system. Significant differences in metabolic activity were found for the mutants tested and based on this drug library screen; nine structurally diverse probe drugs were selected that were subsequently used to study the metabolism of a library of 14 BM3 mutants in more detail. Using this alternative screening strategy, we were able to select a minimal set of BM3 mutants with high metabolic activities and diversity with respect to substrate specificity and regiospecificity that could produce both human relevant and BM3 unique drug metabolites. This panel of four mutants (M02, MT35, MT38, and MT43) was capable of producing P450-mediated metabolites for 41 of the 43 drugs tested while metabolizing 77% of the drugs by more than 20%. We observed this as the first step in our approach to use of bacterial P450 enzymes as general reagents for lead diversification in the drug development process and the biosynthesis of drug(-like) metabolites.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Preparações Farmacêuticas/metabolismo , Proteínas de Bactérias/genética , Cromatografia Líquida/métodos , Sistema Enzimático do Citocromo P-450/genética , Biblioteca Gênica , Humanos , Inativação Metabólica , Espectrometria de Massas/métodos , Microssomos Hepáticos/química , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Mutagênese Sítio-Dirigida , Especificidade por Substrato
3.
Antimicrob Agents Chemother ; 50(3): 899-909, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16495249

RESUMO

VX-950 is a potent, selective, peptidomimetic inhibitor of the hepatitis C virus (HCV) NS3-4A serine protease, and it demonstrated excellent antiviral activity both in genotype 1b HCV replicon cells (50% inhibitory concentration [IC50] = 354 nM) and in human fetal hepatocytes infected with genotype 1a HCV-positive patient sera (IC50 = 280 nM). VX-950 forms a covalent but reversible complex with the genotype 1a HCV NS3-4A protease in a slow-on, slow-off process with a steady-state inhibition constant (K(i)*) of 7 nM. Dissociation of the covalent enzyme-inhibitor complex of VX-950 and genotype 1a HCV protease has a half-life of almost an hour. A >4-log10 reduction in the HCV RNA levels was observed after a 2-week incubation of replicon cells with VX-950, with no rebound of viral RNA observed after withdrawal of the inhibitor. In several animal species, VX-950 exhibits a favorable pharmacokinetic profile with high exposure in the liver. In a recently developed HCV protease mouse model, VX-950 showed excellent inhibition of HCV NS3-4A protease activity in the liver. Therefore, the overall preclinical profile of VX-950 supports its candidacy as a novel oral therapy against hepatitis C.


Assuntos
Hepacivirus/enzimologia , Oligopeptídeos/farmacologia , Oligopeptídeos/farmacocinética , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/farmacocinética , Administração Oral , Animais , Área Sob a Curva , Sítios de Ligação , Disponibilidade Biológica , Linhagem Celular , Células Cultivadas , Cães , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Hepacivirus/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos SCID , Oligopeptídeos/administração & dosagem , RNA Viral/fisiologia , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Replicon/fisiologia , Inibidores de Serina Proteinase/administração & dosagem , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...