Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Oral Investig ; 25(2): 593-601, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32803442

RESUMO

OBJECTIVES: The transcription factor c-Fos controls the differentiation of osteoclasts and is expressed in periodontal ligament cells after mechanical stimulation in vitro. However, it is unclear how c-Fos regulates orthodontic tooth movement (OTM) in vivo. The aim of this study was therefore to analyse OTM in transgenic mice with overexpression of c-Fos. MATERIALS AND METHODS: We employed c-Fos transgenic mice (c-Fos tg) and wild-type littermates (WT) in a model of OTM induced by Nitinol tension springs that were bonded between the left first maxillary molars and the upper incisors. The unstimulated contralateral side served as an internal control. Mice were analysed by contact radiography, micro-computed tomography, decalcified histology and histochemistry. RESULTS: Our analysis of the unstimulated side revealed that alveolar bone and root morphology were similar between c-Fos tg and control mice. However, we observed more osteoclasts in the alveolar bone of c-Fos tg mice as tartrate-resistant acid phosphatase (TRAP)-positive cells were increased by 40%. After 12 days of OTM, c-Fos tg mice exhibited 62% increased tooth movement as compared with WT mice. Despite the faster tooth movement, c-Fos tg and WT mice displayed the same amount of root resorption. Importantly, we did not observe orthodontically induced tissue necrosis (i.e. hyalinization) in c-Fos tg mice, while this was a common finding in WT mice. CONCLUSION: Overexpression of c-Fos accelerates tooth movement without causing more root resorption. CLINICAL RELEVANCE: Accelerated tooth movement must not result in more root resorption as higher tissue turnover may decrease the amount of mechanically induced tissue necrosis.


Assuntos
Reabsorção da Raiz , Técnicas de Movimentação Dentária , Animais , Camundongos , Camundongos Transgênicos , Osteoclastos , Microtomografia por Raio-X
2.
Int J Oral Sci ; 12(1): 35, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33353934

RESUMO

Coffin-Lowry-Syndrome (CLS) is a X-linked mental retardation characterized by skeletal dysplasia and premature tooth loss. We and others have previously demonstrated that the ribosomal S6 kinase RSK2, mutated in CLS, is essential for bone and cementum formation; however, it remains to be established whether RSK2 plays also a role in mechanically induced bone remodeling during orthodontic tooth movement (OTM). We, therefore, performed OTM in wild-type (WT) mice and Rsk2-deficient mice using Nitinol tension springs that were fixed between the upper left molars and the incisors. The untreated contralateral molars served as internal controls. After 12 days of OTM, the jaws were removed and examined by micro-computed tomography (µCT), decalcified histology, and immunohistochemistry. Our analysis of the untreated teeth confirmed that the periodontal phenotype of Rsk2-deficient mice is characterized by alveolar bone loss and hypoplasia of root cementum. Quantification of OTM using µCT revealed that OTM was more than two-fold faster in Rsk2-deficient mice as compared to WT. We also observed that OTM caused alveolar bone loss and root resorptions in WT and Rsk2-deficient mice. However, quantification of these orthodontic side effects revealed no differences between WT and Rsk2-deficient mice. Taken together, Rsk2 loss-of-function accelerates OTM in mice without causing more side effects.


Assuntos
Síndrome de Coffin-Lowry , Reabsorção da Raiz , Animais , Cemento Dentário , Camundongos , Técnicas de Movimentação Dentária , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...