Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 1241, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066075

RESUMO

Soil invertebrates are among the least understood metazoans on Earth. Thus far, the lack of taxonomically broad and dense genomic resources has made it hard to thoroughly investigate their evolution and ecology. With MetaInvert we provide draft genome assemblies for 232 soil invertebrate species, representing 14 common groups and 94 families. We show that this data substantially extends the taxonomic scope of DNA- or RNA-based taxonomic identification. Moreover, we confirm that theories of genome evolution cannot be generalised across evolutionarily distinct invertebrate groups. The soil invertebrate genomes presented here will support the management of soil biodiversity through molecular monitoring of community composition and function, and the discovery of evolutionary adaptations to the challenges of soil conditions.


Assuntos
Invertebrados , Solo , Humanos , Animais , Invertebrados/genética , Biodiversidade , Ecologia , Genômica
2.
Exp Appl Acarol ; 87(4): 289-307, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35939244

RESUMO

Punctoribates is one of few genera in Poronota (Acari: Oribatida) containing species with porose areas and species with saccules, the two types of the octotaxic system. These porose organs are the main difference between two morphologically similar species, P. punctum with porose areas and P. zachvatkini with saccules. As the octotaxic system can vary within species, species separation solely based on this trait might be insufficient. To assess the species status of P. zachvatkini, we investigated additional differences from P. punctum by comparing habitat preferences of the two species regarding nature reserves and agricultural landscapes during a field study in the German Eifel region, and by examining Punctoribates material from four large German natural history museums. We also performed scanning electron microscopy (SEM) and a genetic analysis using the D3 marker of the nuclear 28S rDNA gene. In the field study, P. zachvatkini had higher densities in the nature reserves and P. punctum in the agricultural landscapes. Evaluation of the museum material revealed P. punctum occurred more regularly in disturbed sites such as urban, agricultural and post-mining areas compared to P. zachvatkini. Pairwise distances of the 28S D3 genetic marker as well as an additional base pair in P. zachvatkini further support the separation of the two species, and SEM investigations revealed new details regarding the punctulation of P. zachvatkini. The review of the museum material showed that P. zachvatkini already occurred in Germany in 1967 and has a wider distribution than previously known.


Assuntos
Ácaros , Animais , DNA Ribossômico , Ecossistema , Marcadores Genéticos , Alemanha
3.
Ecol Evol ; 12(6): e8991, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35784064

RESUMO

Metagenomics - shotgun sequencing of all DNA fragments from a community DNA extract - is routinely used to describe the composition, structure, and function of microorganism communities. Advances in DNA sequencing and the availability of genome databases increasingly allow the use of shotgun metagenomics on eukaryotic communities. Metagenomics offers major advances in the recovery of biomass relationships in a sample, in comparison to taxonomic marker gene-based approaches (metabarcoding). However, little is known about the factors which influence metagenomics data from eukaryotic communities, such as differences among organism groups, the properties of reference genomes, and genome assemblies.We evaluated how shotgun metagenomics records composition and biomass in artificial soil invertebrate communities at different sequencing efforts. We generated mock communities of controlled biomass ratios from 28 species from all major soil mesofauna groups: mites, springtails, nematodes, tardigrades, and potworms. We shotgun sequenced these communities and taxonomically assigned them with a database of over 270 soil invertebrate genomes.We recovered over 95% of the species, and observed relatively high false-positive detection rates. We found strong differences in reads assigned to different taxa, with some groups (e.g., springtails) consistently attracting more hits than others (e.g., enchytraeids). Original biomass could be predicted from read counts after considering these taxon-specific differences. Species with larger genomes, and with more complete assemblies, consistently attracted more reads than species with smaller genomes. The GC content of the genome assemblies had no effect on the biomass-read relationships. Results were similar among different sequencing efforts.The results show considerable differences in taxon recovery and taxon specificity of biomass recovery from metagenomic sequence data. The properties of reference genomes and genome assemblies also influence biomass recovery, and they should be considered in metagenomic studies of eukaryotes. We show that low- and high-sequencing efforts yield similar results, suggesting high cost-efficiency of metagenomics for eukaryotic communities. We provide a brief roadmap for investigating factors which influence metagenomics-based eukaryotic community reconstructions. Understanding these factors is timely as accessibility of DNA sequencing and momentum for reference genomes projects show a future where the taxonomic assignment of DNA from any community sample becomes a reality.

4.
Zookeys ; 930: 221-229, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390754

RESUMO

Red Listing of Threatened species is recognized as the most objective approach for evaluating extinction risk of living organisms which can be applied at global or national scales. Invertebrates account for nearly 97% of all animals on the planet but are insufficiently represented in the IUCN Red Lists at both scales. To analyze the occurrence of species present in regional Red Lists, accounts of 48 different countries and regions all over the world were consulted and all data about myriapods (Myriapoda) ever assessed in Red Lists at any level assembled. Myriapod species assessments were found in eleven regional Red Lists; however, no overlap between the species included in the global IUCN Red List and the regional ones was established. This means that myriapod species considered threatened at regional level may not be eligible for international funding specific for protection of native threatened species (more than US$ 25 million were available in the last decade) as most financial instruments tend to support only threatened species included in the IUCN Red List. As the lack of financial resources may limit protection for species in risk of extinction, it is urgent to increase the possibilities of getting financial support for implementation of measures for their protection. A Red List of all Myriapoda species recorded in Red Lists at national or local (596) and global (210) scales totaling 806 species is presented. This list shows for the first time an overview of the current conservation status of Myriapoda species. Here, the urgent need of establishing a Myriapoda Specialist Group in the Species Survival Commission of IUCN is also stressed.

5.
Zookeys ; (741): 271-282, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29706780

RESUMO

Digitisation allows scientists rapid access to research objects. For transparent to semi-transparent three-dimensional microscopic objects, such as microinvertebrates or small body parts of organisms, available databases are scarce. Most mounting media used for permanent microscope slides deteriorate after some years or decades, eventually leading to total damage and loss of the object. However, restoration is labour-intensive, and often the composition of the mounting media is not known. A digital preservation of important material, especially types, is important and an urgent need. The Virtual Microscope Slide Collection - VIRMISCO project has developed recommendations for taking microscopic image stacks of three-dimensional objects, depositing and presenting such series of digital image files or z-stacks as an online platform. The core of VIRMISCO is an online viewer, which enables the user to virtually focus through an object online as if using a real microscope. Additionally, VIRMISCO offers features such as search, rotating, zooming, measuring, changing brightness or contrast, taking snapshots, leaving feedback as well as downloading complete z-stacks as jpeg files or video file. The open source system can be installed by any institution and can be linked to common database or images can be sent to the Senckenberg Museum of Natural History Görlitz. The benefits of VIRMISCO are the preservation of important or fragile material, to avoid loan, to act as a digital archive for image files and to allow determination by experts from the distance, as well as providing reference libraries for taxonomic research or education and providing image series as online supplementary material for publications or digital vouchers of specimens of molecular investigations are relevant applications for VIRMISCO.

6.
Zookeys ; (809): 1-14, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30598611

RESUMO

Discord between molecular and morphological datasets was observed in two pairs of species of Australian millipedes in the family Paradoxosomatidae using morphological and molecular phylogenetic analysis (mitochondrial COI rDNA and 16 rRNA, and nuclear 28S rRNA). Close to the presumed distributional boundary between Pogonosternumnigrovirgatum (Carl, 1912) and Pogonosternumjeekeli Decker, 2017, near Dargo in Central Gippsland, Victoria, Pogonosternum specimens were collected which are phylogenetically closer to P.jeekeli in COI and 16S sequences, but are morphologically closer to P.nigrovirgatum. At Mount Osmond, Adelaide, South Australia, eight morphologically typical Somethuscastaneus (Attems, 1944) specimens were collected are phylogenetically closer to S.castaneus in 28S genealogy, but three of the eight are closer to S.lancearius Jeekel, 2002 in COI genealogy. These two cases are discussed in terms of hybridisation, past introgressive hybridisation events and aberrant morphology.

7.
Zookeys ; (681): 1-38, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769719

RESUMO

The widespread European centipede species Lithobius (Monotarsobius) crassipes L. Koch, 1862 was revised using an integrative approach incorporating sequence data and morphology. The partial mitochondrial cytochrome c oxidase subunit I (COI) barcoding gene was amplified and sequenced for 21 individuals from northern Spain, France and Germany as well as for individuals of three other species of the subgenus Monotarsobius Verhoeff, 1905. The dataset was used for molecular phylogenetic analysis and genetic distance determination. In addition, Monotarsobius specimens from more than 100 localities in northern Spain, France, and Germany were morphologically investigated. Both morphological and molecular data indicate that specimens from the Navarre and Gipuzkoa provinces, northern Spain, represent a distinct pseudo-cryptic species, only differing in some minor characters from L. crassipes. The new species L. (Monotarsobius) crassipesoides sp. n. is described and compared to L. crassipes in detail using morphology and morphometric statistics for body, head, and antennae length, number of ocelli and coxal pores, as well as the starting leg for legpair spines Vmt and DaP. The Iberian and European records of L. crassipes are discussed. The subspecies L. crassipes morenoi Garcia Ruiz, 2014 from Southern Spain is elevated to species as L. morenoistat. n. A checklist, distribution map and key to all five species of Monotarsobius of the Iberian Peninsula are presented.

8.
Exp Appl Acarol ; 71(3): 259-276, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28405837

RESUMO

To make oribatid mites an applicable tool in monitoring programs it is necessary to find a molecular species marker that allows distinct, rapid and easy species identification. In previous studies, the common barcoding sequence COI showed to be too variable to serve as species marker in oribatid mites. The aim of the present study is to evaluate the potential use of the D3 region of the nuclear 28S rDNA gene for species identification. Therefore, we generated a reference DNA library of 28S D3 to identify specimens of the Oribatida from Germany, with focus on species occurring in peatlands being one of the most endangered habitats in Europe. New DNA sequences were obtained from 325 individuals and 64 species (58 genera, 34 families). By adding 28S D3-sequences from GenBank we altogether analysed 385 sequences from 89 German species, 32 of them restricted to peatlands and further 42 occurring in peatlands occasionally, representing 46 and 33% of the oribatids in German peatlands, respectively. P-distances were measured between species within families as well as for intraspecific divergence. 28S D3 showed low intraspecific genetic p-distances between 0 and 0.5%, interspecific distances within families varied between 0 and 9.7%. Most species pairs within families were further separated by one to four indels in addition to substitutions. Altogether, 93% of all analysed species are clearly delineated by 28S D3. Our study emphasises that 28S D3 rDNA is a useful barcode for the identification of oribatid mite specimens and represents an important step in building-up a comprehensive barcode library to allow metabarcoding analyses of environmental peatland samples for Oribatida in Germany as well as in Central Europe.


Assuntos
DNA Ribossômico/química , Evolução Molecular , Ácaros/genética , RNA Ribossômico 28S/química , Animais , Sequência de Bases , DNA Ribossômico/genética , Europa (Continente) , Marcadores Genéticos , Alemanha , Ácaros/classificação , Dados de Sequência Molecular , Partenogênese/genética , Filogenia , RNA Ribossômico 28S/genética , Alinhamento de Sequência , Especificidade da Espécie
9.
Zookeys ; (578): 15-31, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27110194

RESUMO

This study documents the first detailed phylogenetic analysis of an Australian paradoxosomatid millipede genus. Two mitochondrial genes (partial COI and 16S) as well as partial nuclear 28S rDNA were amplified and sequenced for 41 individuals of the southeastern Australian genus Pogonosternum Jeekel, 1965. The analysis indicates that five species groups of Pogonosternum occur across New South Wales, Victoria and Tasmania: Pogonosternum nigrovirgatum (Carl, 1912), Pogonosternum adrianae Jeekel, 1982, Pogonosternum laetificum Jeekel, 1982 and two undescribed species. Pogonosternum coniferum (Jeekel, 1965) specimens cluster within Pogonosternum nigrovirgatum. Most of these five species groups exhibit a pattern of high intraspecific genetic variability and highly localized haplotypes, suggesting that they were confined to multiple Pleistocene refugia on the southeastern Australian mainland. The phylogenetic data also show that northwestern Tasmania was colonized by Pogonosternum nigrovirgatum, probably from central Victoria, and northeastern Tasmania by an as yet undescribed species from eastern Victoria.

10.
Zookeys ; (564): 21-46, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27081331

RESUMO

In order to evaluate the diversity of Central European Myriapoda species in the course of the German Barcode of Life project, 61 cytochrome c oxidase I sequences of the genus Cryptops Leach, 1815, a centipede genus of the order Scolopendromorpha, were successfully sequenced and analyzed. One sequence of Scolopendra cingulata Latreille, 1829 and one of Theatops erythrocephalus Koch, 1847 were utilized as outgroups. Instead of the expected three species (Cryptops parisi Brolemann, 1920; Cryptops anomalans Newport, 1844; Cryptops hortensis (Donovan, 1810)), analyzed samples included eight to ten species. Of the eight clearly distinguishable morphospecies of Cryptops, five (Cryptops parisi; Cryptops croaticus Verhoeff, 1931; Cryptops anomalans; Cryptops umbricus Verhoeff, 1931; Cryptops hortensis) could be tentatively determined to species level, while a further three remain undetermined (one each from Germany, Austria and Croatia, and Slovenia). Cryptops croaticus is recorded for the first time from Austria. A single specimen (previously suspected as being Cryptops anomalans), was redetermined as Cryptops umbricus Verhoeff, 1931, a first record for Germany. All analyzed Cryptops species are monophyletic and show large genetic distances from one another (p-distances of 13.7-22.2%). Clear barcoding gaps are present in lineages represented by >10 specimens, highlighting the usefulness of the barcoding method for evaluating species diversity in centipedes. German specimens formally assigned to Cryptops parisi are divided into three clades differing by 8.4-11.3% from one another; their intra-lineage genetic distance is much lower at 0-1.1%. The three clades are geographically separate, indicating that they might represent distinct species. Aside from Cryptops parisi, intraspecific distances of Cryptops spp. in Central Europe are low (<3.3%).

11.
Zookeys ; (510): 15-29, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26257532

RESUMO

As part of the German Barcode of Life (GBOL) Myriapoda program, which aims to sequence the COI barcoding fragment for 2000 specimens of Germany's 200 myriapod species in the near future, 44 sequences of the centipede order Geophilomorpha are analyzed. The analyses are limited to the genera Geophilus Leach, 1814 and Stenotaenia Koch, 1847 and include a total of six species. A special focus is Stenotaenia, of which 19 specimens from southern, western and eastern Germany could be successfully sequenced. The Stenotaenia data shows the presence of three to four vastly different (13.7-16.7% p-distance) lineages of the genus in Germany. At least two of the three lineages show a wide distribution across Germany, only the lineage including topotypes of Stenotaenialinearis shows a more restricted distribution in southern Germany. In a maximum likelihood phylogenetic analysis the Italian species Stenotaenia 'sorrentina' (Attems, 1903) groups with the different German Stenotaenialinearis clades. The strongly different Stenotaenialinearis lineages within Germany, independent of geography, are a strong hint for the presence of additional, cryptic Stenotaenia species in Germany.

12.
Biodivers Data J ; (2): e1066, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24891823

RESUMO

A review is given of all the literature records of millipedes and centipedes that have been found in German greenhouses together with additional records for 29 such sites. Species lists are given for 46 greenhouses investigated throughout Germany. Thirty-five diplopod and 18 chilopod species were found to occur in greenhouses, of which 15 (3 Chilopoda, 12 Diplopoda) are restricted to this type of habitat. First records for Germany include Anadenobolusmonilicornis (Porat, 1876), Epinannolenecf.trinidadensis Chamberlin, 1918, Epinannolene sp., Mesoiulusgridellii Strasser, 1934, Leptogoniulussorornus (Butler, 1876), Rhinotuspurpureus (Pocock, 1894), Cryptopsdoriae Pocock, 1891, Lamyctescoeculus (Brölemann, 1889) and Tygarrupjavanicus (Attems, 1907). The millipedes Oxidusgracilis (C. L. Koch, 1847) and Amphitomeusattemsi (Schubart, 1934) and the centipedes Lithobiusforficatus (Linnaeus, 1758) and Cryptopshortensis (Donovan, 1810) are the species most frequently found in greenhouses.

13.
Genes Dev ; 26(16): 1851-63, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22895253

RESUMO

Plant development is profoundly regulated by ambient light cues through the red/far-red photoreceptors, the phytochromes. Early phytochrome signaling events include the translocation of phytochromes from the cytoplasm to subnuclear domains called photobodies and the degradation of antagonistically acting phytochrome-interacting factors (PIFs). We recently identified a key phytochrome signaling component, HEMERA (HMR), that is essential for both phytochrome B (phyB) localization to photobodies and PIF degradation. However, the signaling mechanism linking phytochromes and HMR is unknown. Here we show that phytochromes directly interact with HMR to promote HMR protein accumulation in the light. HMR binds more strongly to the active form of phytochromes. This interaction is mediated by the photosensory domains of phytochromes and two phytochrome-interacting regions in HMR. Missense mutations in either HMR or phyB that alter the phytochrome/HMR interaction can also change HMR levels and photomorphogenetic responses. HMR accumulation in a constitutively active phyB mutant (YHB) is required for YHB-dependent PIF3 degradation in the dark. Our genetic and biochemical studies strongly support a novel phytochrome signaling mechanism in which photoactivated phytochromes directly interact with HMR and promote HMR accumulation, which in turn mediates the formation of photobodies and the degradation of PIFs to establish photomorphogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Luz , Fitocromo/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais
15.
Animals (Basel) ; 2(4): 564-90, 2012 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-26487164

RESUMO

Floodplain forests and wetlands are amongst the most diverse and species rich habitats on earth. Arthropods are a key group for the high diversity pattern of these landscapes, due to the fact that the change between flooding and drought causes in different life cycles and in a variety of adaptations in the different taxa. The floodplain forests and wetlands of Central Amazonia are well investigated and over the last 50 years many adaptations of several hexapod, myriapod and arachnid orders were described. In contrast to Amazonia the Middle European floodplains were less investigated concerning the adaptations of arthropods to flood and drought conditions. This review summarizes the adaptations and predispositions of springtails, web spiders, millipedes and centipedes to the changeable flood and drought conditions of Middle European floodplain forests and wetlands. Furthermore the impact of regional climate change predictions like increasing aperiodic summer floods and the decrease of typical winter and spring floods are discussed in this article.

16.
PLoS One ; 6(12): e28035, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22162998

RESUMO

To elucidate the speciation mechanisms prevalent within hotspots of biodiversity, and the evolutionary processes behind the rise of their species-rich and endemic biota, we investigated the phylogeny of the giant fire-millipede genus Aphistogoniulus Silvestri, 1897, a Malagasy endemic. This study is the first comprehensive (molecular and morphological) phylogenetic study focusing on millipede (class Diplopoda) speciation on Madagascar. The morphological analysis is based on 35 morphological characters and incorporates ten described as well as two newly described species (A. rubrodorsalisn. sp. and A. jeekelin. sp.) of Aphistogoniulus. The molecular analysis is based on both mitochondrial (COI and 16S), and nuclear genes (complete 18S rDNA), together comprised of 3031 base pairs, which were successfully sequenced for 31 individual specimens and eight species of Aphistogoniulus. In addition to the null-model (speciation by distance), two diversification models, mountain refugia and ecotone shift, were discovered to play a role in the speciation of soil arthropods on Madagascar. Mountain refugia were important in the speciation of the A. cowani clade, with three species occurring in the Andringitra and Ranomafana Mountains in the southeast (A. cowani), the Ambohijanahary and Ambohitantely Mountains in the mid-west (A. sanguineus), and the Marojejy Mountain in the northeast (A. rubrodorsalisn. sp.). An ecotone shift from the eastern rainforest to the unique subarid spiny forest of Mahavelo was discovered in the A. vampyrus-A. aridus species-pair. In the monophyletic A. diabolicus clade, evidence for divergent evolution of sexual morphology was detected: species with greatly enlarged gonopods are sister-taxa to species with normal sized gonopods. Among the large-bodied Spirobolida genera of Madagascar, Colossobolus and Sanguinobolus were found to be close sister-genera to Aphistogoniulus. Forest destruction has caused forest corridors between populations to disappear, which might limit the possible resolution of biogeographic analyses on Madagascar.


Assuntos
Artrópodes/fisiologia , Animais , Biodiversidade , Núcleo Celular/metabolismo , DNA Mitocondrial/genética , Evolução Molecular , Variação Genética , Geografia , Funções Verossimilhança , Madagáscar , Modelos Teóricos , Filogenia , Análise de Sequência de DNA , Solo , Especificidade da Espécie , Árvores
17.
J Microbiol Methods ; 73(2): 160-71, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18400320

RESUMO

Methods to assess the diversity of the diazotroph assemblage in the rhizosphere of the salt marsh cordgrass, Spartina alterniflora were examined. The effectiveness of nifH PCR-denaturing gradient gel electrophoresis (DGGE) was compared to that of nifH clone library analysis. Seventeen DGGE gel bands were sequenced and yielded 58 nonidentical nifH sequences from a total of 67 sequences determined. A clone library constructed using the GC-clamp nifH primers that were employed in the PCR-DGGE (designated the GC-Library) yielded 83 nonidentical sequences from a total of 257 nifH sequences. A second library constructed using an alternate set of nifH primers (N-Library) yielded 83 nonidentical sequences from a total of 138 nifH sequences. Rarefaction curves for the libraries did not reach saturation, although the GC-Library curve was substantially dampened and appeared to be closer to saturation than the N-Library curve. Phylogenetic analyses showed that DGGE gel band sequencing recovered nifH sequences that were frequently sampled in the GC-Library, as well as sequences that were infrequently sampled, and provided a species composition assessment that was robust, efficient, and relatively inexpensive to obtain. Further, the DGGE method permits a large number of samples to be examined for differences in banding patterns, after which bands of interest can be sampled for sequence determination.


Assuntos
Bactérias/classificação , Bactérias/genética , Biodiversidade , DNA Bacteriano/genética , Poaceae/microbiologia , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Análise por Conglomerados , Primers do DNA/genética , DNA Bacteriano/química , Eletroforese em Gel de Campo Pulsado , Dados de Sequência Molecular , Oxirredutases/genética , Filogenia , Raízes de Plantas/microbiologia , Análise de Sequência de DNA , Homologia de Sequência , Microbiologia do Solo
18.
Genetics ; 178(3): 1209-20, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18245364

RESUMO

Esa1 is the only essential histone acetyltransferase (HAT) in budding yeast. It is the catalytic subunit of at least two multiprotein complexes, NuA4 and Piccolo NuA4 (picNuA4), and its essential function is believed to be its catalytic HAT activity. To examine the role of Esa1 in DNA damage repair, we isolated viable esa1 mutants with a range of hypersensitivities to the toposide camptothecin. Here we show that the sensitivity of these mutants to a variety of stresses is inversely proportional to their level of histone H4 acetylation, demonstrating the importance of Esa1 catalytic activity for resistance to genotoxic stress. Surprisingly, individual mutations in two residues directly involved in catalysis were not lethal even though the mutant enzymes appear catalytically inactive both in vivo and in vitro. However, the double-point mutant is lethal, demonstrating that the essential function of Esa1 relies on residues within the catalytic pocket but not catalysis. We propose that the essential function of Esa1 may be to bind acetyl-CoA or lysine substrates and positively regulate the activities of NuA4 and Piccolo NuA4.


Assuntos
Domínio Catalítico/genética , Histona Acetiltransferases/genética , Mutação/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Alelos , Western Blotting , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Viabilidade Microbiana , Modelos Genéticos , Fenótipo , Estrutura Secundária de Proteína , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...