Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 42(3): 615-627, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27515791

RESUMO

Several neuropsychiatric conditions, such as addiction and schizophrenia, may arise in part from dysregulated activity of ventral tegmental area dopaminergic (THVTA) neurons, as well as from more global maladaptation in neurocircuit function. However, whether THVTA activity affects large-scale brain-wide function remains unknown. Here we selectively activated THVTA neurons in transgenic rats and measured resulting changes in whole-brain activity using stimulus-evoked functional magnetic resonance imaging. Applying a standard generalized linear model analysis approach, our results indicate that selective optogenetic stimulation of THVTA neurons enhanced cerebral blood volume signals in striatal target regions in a dopamine receptor-dependent manner. However, brain-wide voxel-based principal component analysis of the same data set revealed that dopaminergic modulation activates several additional anatomically distinct regions throughout the brain, not typically associated with dopamine release events. Furthermore, explicit pairing of THVTA neuronal activation with a forepaw stimulus of a particular frequency expanded the sensory representation of that stimulus, not exclusively within the somatosensory cortices, but brain-wide. These data suggest that modulation of THVTA neurons can impact brain dynamics across many distributed anatomically distinct regions, even those that receive little to no direct THVTA input.


Assuntos
Benzazepinas/farmacologia , Encéfalo/fisiologia , Circulação Cerebrovascular/fisiologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Neuroimagem Funcional/métodos , Receptores de Dopamina D1/antagonistas & inibidores , Área Tegmentar Ventral/fisiologia , Animais , Benzazepinas/administração & dosagem , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Imageamento por Ressonância Magnética/métodos , Masculino , Ratos , Ratos Long-Evans , Área Tegmentar Ventral/diagnóstico por imagem , Área Tegmentar Ventral/efeitos dos fármacos
2.
Neuropsychopharmacology ; 39(9): 2170-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24633560

RESUMO

Neurexins are presynaptic neuronal adhesion molecules that interact with postsynaptic neuroligins to form an inter-synaptic complex required for synaptic specification and efficient neurotransmission. Deletions and point mutations in the neurexin 1 (NRXN1) gene are associated with a broad spectrum of neuropsychiatric and neurodevelopmental disorders, including autism, intellectual disability, epilepsy, developmental delay, and schizophrenia. Recently, small nucleotide polymorphisms in NRXN1 have been associated with antipsychotic drug response in patients with schizophrenia. Based on previous suggestive evidence of an impact on clozapine response in patients with schizophrenia, we conducted an association study of NRXN1 polymorphisms (rs12467557 and rs10490162) with antipsychotic treatment response in 54 patients with schizophrenia in a double blind, placebo-controlled NIMH inpatient crossover trial and examined for association with risk for schizophrenia in independent case-control and family-based clinical cohorts. Pharmacogenetic analysis in the placebo controlled trial revealed significant association of rs12467557and rs10490162 with drug response, whereby individuals homozygous for the A allele, at either SNP, showed significant improvement in positive symptoms, general psychopathology, thought disturbance, and negative symptoms, whereas patients carrying the G allele showed no overall response. Although we did not find evidence of the same NRXN1 SNPs being associated with results of the NIMH sponsored CATIE trial, other SNPs showed weakly positive signals. The family and case-control analyses for schizophrenia risk were negative. Our results provide confirmatory evidence of genetically determined differences in drug response in patients with schizophrenia related to NRXN1 variation. Furthermore, these findings potentially implicate NRXN1 in the therapeutic actions of antipsychotic drugs.


Assuntos
Antipsicóticos/uso terapêutico , Moléculas de Adesão Celular Neuronais/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Adulto , Proteínas de Ligação ao Cálcio , Estudos de Casos e Controles , Estudos de Coortes , Estudos Cross-Over , Método Duplo-Cego , Família , Feminino , Técnicas de Genotipagem , Humanos , Masculino , Moléculas de Adesão de Célula Nervosa , Farmacogenética , Escalas de Graduação Psiquiátrica , Risco , Resultado do Tratamento
3.
J Neurosci ; 34(10): 3699-705, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24599468

RESUMO

Forming and breaking associations between emotionally salient environmental stimuli and rewarding or aversive outcomes is an essential component of learned adaptive behavior. Importantly, when cue-reward contingencies degrade, animals must exhibit behavioral flexibility to extinguish prior learned associations. Understanding the specific neural circuit mechanisms that operate during the formation and extinction of conditioned behaviors is critical because dysregulation of these neural processes is hypothesized to underlie many of the maladaptive and pathological behaviors observed in various neuropsychiatric disorders in humans. The medial prefrontal cortex (mPFC) participates in the behavioral adaptations seen in both appetitive and aversive-cue-mediated responding, but the precise cell types and circuit mechanisms sufficient for driving these complex behavioral states remain largely unspecified. Here, we recorded and manipulated the activity of parvalbumin-positive fast spiking interneurons (PV+ FSIs) in the prelimbic area (PrL) of the mPFC in mice. In vivo photostimulation of PV+ FSIs resulted in a net inhibition of PrL neurons, providing a circuit blueprint for behavioral manipulations. Photostimulation of mPFC PV+ cells did not alter anticipatory or consummatory licking behavior during reinforced training sessions. However, optical activation of these inhibitory interneurons to cues associated with reward significantly accelerated the extinction of behavior during non-reinforced test sessions. These data suggest that suppression of excitatory mPFC networks via increased activity of PV+ FSIs may enhance reward-related behavioral flexibility.


Assuntos
Extinção Psicológica/fisiologia , Interneurônios/metabolismo , Parvalbuminas/metabolismo , Córtex Pré-Frontal/metabolismo , Recompensa , Animais , Interneurônios/citologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Estimulação Luminosa/métodos , Córtex Pré-Frontal/citologia
4.
Neuropharmacology ; 76 Pt B: 320-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23752096

RESUMO

Complex motivated behavioral processes, such as those that can go awry following substance abuse and other neuropsychiatric disorders, are mediated by a distributive network of neurons that reside throughout the brain. Neural circuits within the amygdala regions, such as the basolateral amygdala (BLA), and downstream targets such as the bed nucleus of the stria terminalis (BNST), are critical neuroanatomical structures for orchestrating emotional behavioral responses that may influence motivated actions such as the reinstatement of drug seeking behavior. Here, we review the functional neurocircuitry of the BLA and the BNST, and discuss how these circuits may guide maladaptive behavioral processes such as those seen in addiction. Thus, further study of the functional connectivity within these brain regions and others may provide insight for the development of new treatment strategies for substance use disorders. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.


Assuntos
Tonsila do Cerebelo/patologia , Comportamento Aditivo/patologia , Núcleos Septais/patologia , Animais , Humanos , Vias Neurais/fisiologia
5.
CNS Drugs ; 27(8): 663-73, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23794107

RESUMO

BACKGROUND: Attention is the capacity to flexibly orient behaviors and thoughts towards a goal by selecting and integrating relevant contextual information. The dorsal cingulate (dCC) and prefrontal (PFC) cortices play critical roles in attention. Evidence indicates that catechol-O-methyltransferase (COMT) modulates dopaminergic tone in the PFC and dCC. OBJECTIVE: In this study, we explored the effect of tolcapone, a CNS penetrant COMT inhibitor that increases cortical dopamine levels, on brain activity during a Variable Attentional Control (VAC) task. STUDY DESIGN: We performed a double-blinded, placebo-controlled, counter-balanced trial with tolcapone (Tasmar, tablets, 100 mg three times a day for 1 day and then 200 mg three times a day for 6 days; ClinicalTrials.gov identifier: NCT00044083). SETTING: The study was conducted in the Clinical Center of the National Institute of Mental Health from 2005 to 2009. PATIENTS: Twenty healthy volunteers (11 males; mean age = 32.7 years) with good imaging and performance data on both arms of the study were investigated. INTERVENTION: Participants underwent 3T blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) while performing the event-related VAC task, which varies attention over three levels of load: LOW, INT (intermediate), and HIGH. MAIN OUTCOME MEASURE: Changes in behavioral data and individual contrast images were analyzed using ANOVA with drug and task load as co-factors. RESULTS: There was a significant main effect of increasing task load, with resulting decreased accuracy and increased reaction time. While there was no significant effect of tolcapone on these behavioral measures, the neuroimaging data showed a significant effect on load-related changes in dCC, with significantly lower dCC activation on tolcapone compared with placebo. Further, neural activity in dCC correlated positively with COMT enzyme activity (i.e., lower COMT activity and presumably more dopamine was associated with lower activation in dCC, i.e., more efficient information processing). CONCLUSION: Our results show that pharmacological reduction of COMT activity modulates the engagement of attentional mechanisms, selectively enhancing the efficiency of dCC processing in healthy volunteers, reflected as decreased activity for the same level of performance.


Assuntos
Benzofenonas/farmacologia , Inibidores de Catecol O-Metiltransferase , Inibidores Enzimáticos/farmacologia , Nitrofenóis/farmacologia , Desempenho Psicomotor/efeitos dos fármacos , Adulto , Análise de Variância , Atenção/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Estudos Cross-Over , Dopamina/metabolismo , Método Duplo-Cego , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Tolcapona , Adulto Jovem
6.
Am J Psychiatry ; 169(7): 725-34, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22706279

RESUMO

OBJECTIVE: Antidopaminergic drugs bind to hERG1 potassium channels encoded by the gene KCNH2, which accounts for the side effect of QT interval prolongation. KCNH2 has also been associated with schizophrenia risk, and risk alleles predict increased expression of a brain-selective isoform, KCNH2 3.1, that has unique physiological properties. The authors assessed whether genetic variation associated with KCNH2 3.1 expression influences the therapeutic effects of antipsychotic drugs. METHOD: The authors performed a pharmacogenetic analysis of antipsychotic treatment response in patients with schizophrenia using data from two independent studies: a National Institute of Mental Health (NIMH) double-blind, placebo-controlled inpatient crossover trial (N=54) and the multicenter outpatient Clinical Antipsychotic Trials in Intervention Effectiveness (CATIE) study (N=364). The KCNH2 genotype that was previously associated with increased expression of KCNH2 3.1 in the brain was treated as a predictor variable. Treatment-associated changes in symptoms were evaluated in both groups with the Positive and Negative Syndrome Scale. The authors also analyzed time to discontinuation in the olanzapine arm of the CATIE study. RESULTS: In the NIMH study, individuals who were homozygous for the KCNH2 3.1 increased expression-associated T allele of rs1036145 showed significant improvement in positive symptoms, general psychopathology, and thought disturbance, while patients with other genotypes showed little change. In the CATIE study, analogous significant genotypic effects were observed. Moreover, individuals who were homozygous for the T allele at rs1036145 were one-fifth as likely to discontinue olanzapine. CONCLUSIONS: These consistent findings in two markedly different treatment studies support the hypothesis that hERG1-mediated effects of antipsychotics may not be limited to their potential cardiovascular side effects but may also involve therapeutic actions related to the brainspecific 3.1 isoform of KCNH2.


Assuntos
Antipsicóticos/uso terapêutico , Canais de Potássio Éter-A-Go-Go/genética , Variação Genética/genética , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Adulto , Alelos , Ensaios Clínicos como Assunto/estatística & dados numéricos , Canal de Potássio ERG1 , Feminino , Genótipo , Humanos , Desequilíbrio de Ligação/genética , Masculino , Isoformas de Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...