Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Biol ; 96(3): 411-418, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31746658

RESUMO

Aim: The Pasche research group has reported that tumor-specific electromagnetic field frequencies have physiological and potential anti-tumor effects in cells, animals, and humans. Our aim was to investigate whether these fields have similar effects on physiological parameters in murine tumor models.Methods: Human HuH7 or HEPG2 cells were implanted in the right flank of 8-week-old female RAG gamma 2 C immunodeficient mice. An oximeter was used to record systolic blood pressure (pulse) in free-roaming conscious mice. Mice pulses were recorded and analyzed using a in-house software that also controlled the low-frequency generator for modulating the 27.12 MHz carrier wave at selected frequencies.Results: We performed exposures using both systematic scans at low frequencies and at the pre-determined frequencies reported by the Pasche group as altering both pulse and tumor growth in humans. Those exposures produced no detectable change in physiological parameters of tumor-bearing mice.Conclusion: No tumor-related frequencies were found, neither using systematic scans of frequencies nor published specific frequencies. There might obviously be differences between animal and human models, but our approach did not confirm the physiological data of the human Pasche group data.


Assuntos
Carcinoma Hepatocelular/patologia , Campos Eletromagnéticos , Neoplasias Hepáticas/patologia , Animais , Pressão Sanguínea , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Células Hep G2 , Humanos , Neoplasias Hepáticas/terapia , Camundongos , Camundongos SCID , Transplante de Neoplasias , Oximetria
2.
Inorg Chem ; 57(22): 14230-14239, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30407001

RESUMO

Intermetallic phases have been investigated with respect to their ability to accept small atoms in interstitial sites without changing the host structure. Among those, the intermetallic compounds crystallizing in the tetragonal CeScSi-type structure are able to absorb hydrogen atoms. These compounds are of particular interest because they can show electride-like character and, therefore, can be exploited as new catalysts. Here we report the case of GdScGe which uptakes hydrogen at 623 K and under a H2 gas pressure between 0.5 and 4 MPa. The formation of the hydride GdScGeH, with H atoms entering into the [Gd4] tetrahedra, preserves the host structure but induces an anisotropic volume expansion with a strong increase of the c-parameter and a slight decrease of the a-parameter. Interestingly, we show for the first time for this family of materials that hydrogen insertion reduces the dimensionality of the magnetic and transport properties from 3D to quasi-2D which results in a vanishing of the ferromagnetic order ( TC = 350 K for GdScGe) and a change of the metallic conduction behavior to a nonmetallic one. As evidenced by density functional theory calculations, such drastic effects are accounted for through the Gd-H chemical bonding effect and the oxidizing effect of H whereas the volume expansion plays only a minor role.

3.
ACS Appl Mater Interfaces ; 10(5): 4786-4793, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29313341

RESUMO

Half-Heusler alloys based on TiNiSn are promising thermoelectric materials characterized by large power factors and good mechanical and thermal stabilities, but they are limited by large thermal conductivities. A variety of strategies have been used to disrupt their thermal transport, including alloying with heavy, generally expensive, elements and nanostructuring, enabling figures of merit, ZT ≥ 1 at elevated temperatures (>773 K). Here, we demonstrate an alternative strategy that is based around the partial segregation of excess Cu leading to grain-by-grain compositional variations, the formation of extruded Cu "wetting layers" between grains, and-most importantly-the presence of statistically distributed interstitials that reduce the thermal conductivity effectively through point-defect scattering. Our best TiNiCuySn (y ≤ 0.1) compositions have a temperature-averaged ZTdevice = 0.3-0.4 and estimated leg power outputs of 6-7 W cm-2 in the 323-773 K temperature range. This is a significant development as these materials were prepared using a straightforward processing method, do not contain any toxic, expensive, or scarce elements, and are therefore promising candidates for large-scale production.

4.
Dalton Trans ; 47(2): 382-393, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29218338

RESUMO

The synthesis of a Co-doped or Fe-doped La(Ga,Al)O3 perovskite via the Pechini process aimed to achieve a color change induced by temperature and associated with spin crossover (SCO). In Fe-doped samples, iron was shown to be in the high-spin state, whereas SCO from the low-spin to the high-spin configuration was detected in Co-doped compounds when the temperature increased. Fe-doped compounds clearly adopted the high-spin configuration even down to 4 K on the basis of Mössbauer spectroscopic analysis. The original SCO phenomenon in the Co-doped compounds LaGa1-xCoxO3 (0 < x < 0.1) was evidenced and discussed on the basis of in situ X-ray diffraction analysis and UV-vis spectroscopy. This SCO is progressive as a function of temperature and occurs over a broad range of temperatures between roughly 300 °C and 600 °C. The determination of a crystal field strength of about 2 eV and a Racah parameter B of about 500 cm-1 for Co3+ (3d6) ions show that these values allow the occurrence of SCO. Hence, this study shows the possibility of using LaGa1-xCoxO3 compounds as thermal sensors at low Co contents (x = 0.02). The competition between steric and electronic effects in LaGaO3 in which Co3+ is stabilized in the LS state shows that electronic effects with the creation of M-O covalent bonds are predominant and contribute to the stabilization of a high crystal field around Co3+ (LS) although its ionic radius is smaller in comparison with that of Ga3+.

5.
Inorg Chem ; 54(15): 7345-52, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26161799

RESUMO

We describe the synthesis and the crystallographic and magnetic properties of a novel NaCoCr2(PO4)3 phosphate. A conventional solid-state reaction was used to obtain single-phase powders. A Rietveld analysis of powder X-ray diffraction data proposes an orthorhombic symmetry similar to α-CrPO4-type structure in space group Imma with the following unit cell parameters: a = 10.413(1) Å; b = 13.027(1) Å; c = 6.372(1) Å. The framework consists of PO4 tetrahedra, M(1)O6 (M(1) = Cr) octahedra, and M(2)2O10 (M(2) = 0.5Cr+0.5Co) binuclear unit of edge-sharing MO6 octahedra. It can be described in terms of two building blocks: sheets consisting of corner-sharing M(2)2O10 units with PO4 tetrahedra found parallel to the (b,c) plane, and chains made by corner-sharing CrO6 octahedra and PO4 tetrahedra running along the b axis. From the interconnection of the sheets and chains, a 3D rigid skeleton is formed, exhibiting two kinds of intersecting tunnel channels containing the Na(+) ions. The proposed structure derives from the α-CrPO4-type structure considering a positive charge balance according to the equation Cr(3+) → Co(2+) + Na(+), resulting in sodium countercation introduction within the unoccupied channels shown in the α-CrPO4 framework. Temperature-dependent DC and AC magnetic susceptibility is indicative of a long-range magnetic ordering occurring at 32 K. Further, spin-flop transition sheds light on a chromium-based phosphate for the first time.

6.
Inorg Chem ; 48(20): 9671-83, 2009 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-19769377

RESUMO

Lamellar A(x)CoO(2) cobalt double oxides with A = Li, Na, and K (x approximately 0.6) have been synthesized and their chemical (alkali content, oxidation state, and structure) and physical (resistivity, thermopower, magnetization, and specific heat) properties have been studied. All the three materials exhibit strong electron correlation emphasized by their behavior ranging from Fermi liquid to spin-polarized system. Our results show that both the dimensionality of the interactions and the nature of the alkali play a determining role on the properties.

7.
Nat Mater ; 8(2): 101-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19151704

RESUMO

Semiconductors are key materials in modern electronics and are widely used to build, for instance, transistors in integrated circuits as well as thermoelectric materials for energy conversion, and there is a tremendous interest in the development and improvement of novel materials and technologies to increase the performance of electronic devices and thermoelectrics. Tetramorphic Ag(10)Te(4)Br(3) is a semiconductor capable of switching its electrical properties by a simple change of temperature. The combination of high silver mobility, a small non-stoichiometry range and an internal redox process in the tellurium substructure causes a thermopower drop of 1,400 microV K(-1), in addition to a thermal diffusivity in the range of organic polymers. The capability to reversibly switch semiconducting properties from ionic to electronic conduction in one single compound simply by virtue of temperature enables novel electronic devices such as semiconductor switches.

8.
Inorg Chem ; 44(25): 9299-304, 2005 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-16323913

RESUMO

The layered P2-K4Co7O14 oxide has been prepared and characterized by means of X-ray diffraction, electrical conductivity, thermopower, and magnetic measurements. The crystal structure of K4Co7O14 (P6(3)/m space group, Z=2, a=7.5171(1) A, and c=12.371(1) A) consists of a stacking of slabs of edge-shared CoO6 octahedra with K+ ions occupying ordered positions in the interslab space, leading to a a0 radical7xa0 radical7 supercell. Potential energy calculations at 0 K are in good agreement with the ordered distribution of potassium ions in the (ab) plane. This oxide is metallic, and the magnetic susceptibility is of Pauli-type, which contrasts with the Curie-Weiss behavior of the homologous NaxCoO2 (x approximately 0.6) oxide with close alkali content. The thermopower at room temperature is about one-third that of polycrystalline Na0.6CoO2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...