Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38927093

RESUMO

Special attention is given to cow's milk and its variants, with ongoing discussions about health-related impacts primarily focusing on the A1 variant in contrast to the A2 variant. The difference between these variants lies in a single amino acid alteration at position 67 of ß-casein. This alteration is presumed to make the A1 variant more susceptible to enzymatic breakdown during milk digestion, leading to an increased release of the peptide ß-casomorphin-7 (BCM-7). BCM-7 is hypothesized to interact with µ-opioid receptors on immune cells in humans. Although BCM-7 has demonstrated both immunosuppressive and inflammatory effects, its direct impact on the immune system remains unclear. Thus, we examined the influence of A1 and A2 milk on Concanavalin A (ConA)-stimulated human peripheral blood mononuclear cells (PBMCs), as well as the effect of experimentally digested A1 and A2 milk, containing different amounts of free BCM-7 from ß-casein cleavage. Additionally, we evaluated the effects of pure BCM-7 on the proliferation of ConA-stimulated PBMCs and purified CD4+ T cells. Milk fundamentally inhibited PBMC proliferation, independent of the ß-casein variant. In contrast, experimentally digested milk of both variants and pure BCM-7 showed no influence on the proliferation of PBMCs or isolated CD4+ T cells. Our results indicate that milk exerts an anti-inflammatory effect on PBMCs, regardless of the A1 or A2 ß-casein variant, which is nullified after in vitro digestion. Consequently, we deem BCM-7 unsuitable as a biomarker for food-induced inflammation.


Assuntos
Caseínas , Proliferação de Células , Endorfinas , Leucócitos Mononucleares , Leite , Fragmentos de Peptídeos , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/citologia , Proliferação de Células/efeitos dos fármacos , Leite/química , Endorfinas/farmacologia , Endorfinas/metabolismo , Animais , Caseínas/farmacologia , Caseínas/metabolismo , Fragmentos de Peptídeos/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/citologia , Concanavalina A/farmacologia , Bovinos
2.
Metabolites ; 14(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38668343

RESUMO

Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of bovine paratuberculosis, a chronic granulomatous enteritis leading to economic losses and posing a risk to human health due to its zoonotic potential. The pathogen cannot reliably be detected by standard methods, and immunological procedures during the infection are not well understood. Therefore, the aim of our study was to explore host-pathogen interactions in MAP-infected dairy cows and to improve diagnostic tests. Serum proteomics analysis using quantitative label-free LC-MS/MS revealed 60 differentially abundant proteins in MAP-infected dairy cows compared to healthy controls from the same infected herd and 90 differentially abundant proteins in comparison to another control group from an uninfected herd. Pathway enrichment analysis provided new insights into the immune response to MAP and susceptibility to the infection. Furthermore, we found a higher abundance of Cathepsin S (CTSS) in the serum of MAP-infected dairy cows, which is involved in multiple enriched pathways associated with the immune system. Confirmed with Western blotting, we identified CTSS as a potential biomarker for bovine paratuberculosis. This study enabled a better understanding of procedures in the host-pathogen response to MAP and improved detection of paratuberculosis-diseased cattle.

3.
Biomolecules ; 13(9)2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37759700

RESUMO

The majority of peptides presented by MHC class I result from proteasomal protein turnover. The specialized immunoproteasome, which is induced during inflammation, plays a major role in antigenic peptide generation. However, other cellular proteases can, either alone or together with the proteasome, contribute peptides to MHC class I loading non-canonically. We used an immunopeptidomics workflow combined with prediction software for proteasomal cleavage probabilities to analyze how inflammatory conditions affect the proteasomal processing of immune epitopes presented by A549 cells. The treatment of A549 cells with IFNγ enhanced the proteasomal cleavage probability of MHC class I ligands for both the constitutive proteasome and the immunoproteasome. Furthermore, IFNγ alters the contribution of the different HLA allotypes to the immunopeptidome. When we calculated the HLA allotype-specific proteasomal cleavage probabilities for MHC class I ligands, the peptides presented by HLA-A*30:01 showed characteristics hinting at a reduced C-terminal proteasomal cleavage probability independently of the type of proteasome. This was confirmed by HLA-A*30:01 ligands from the immune epitope database, which also showed this effect. Furthermore, two additional HLA allotypes, namely, HLA-A*03:01 and HLA-A*11:01, presented peptides with a markedly reduced C-terminal proteasomal cleavage probability. The peptides eluted from all three HLA allotypes shared a peptide binding motif with a C-terminal lysine residue, suggesting that this lysine residue impairs proteasome-dependent HLA ligand production and might, in turn, favor peptide generation by other cellular proteases.


Assuntos
Lisina , Complexo de Endopeptidases do Proteassoma , Ligantes , Endopeptidases , Epitopos , Probabilidade , Antígenos HLA-A
4.
Eur Respir J ; 62(2)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37385655

RESUMO

BACKGROUND: Virus infections drive COPD exacerbations and progression. Antiviral immunity centres on the activation of virus-specific CD8+ T-cells by viral epitopes presented on major histocompatibility complex (MHC) class I molecules of infected cells. These epitopes are generated by the immunoproteasome, a specialised intracellular protein degradation machine, which is induced by antiviral cytokines in infected cells. METHODS: We analysed the effects of cigarette smoke on cytokine- and virus-mediated induction of the immunoproteasome in vitro, ex vivo and in vivo using RNA and Western blot analyses. CD8+ T-cell activation was determined in co-culture assays with cigarette smoke-exposed influenza A virus (IAV)-infected cells. Mass-spectrometry-based analysis of MHC class I-bound peptides uncovered the effects of cigarette smoke on inflammatory antigen presentation in lung cells. IAV-specific CD8+ T-cell numbers were determined in patients' peripheral blood using tetramer technology. RESULTS: Cigarette smoke impaired the induction of the immunoproteasome by cytokine signalling and viral infection in lung cells in vitro, ex vivo and in vivo. In addition, cigarette smoke altered the peptide repertoire of antigens presented on MHC class I molecules under inflammatory conditions. Importantly, MHC class I-mediated activation of IAV-specific CD8+ T-cells was dampened by cigarette smoke. COPD patients exhibited reduced numbers of circulating IAV-specific CD8+ T-cells compared to healthy controls and asthmatics. CONCLUSION: Our data indicate that cigarette smoke interferes with MHC class I antigen generation and presentation and thereby contributes to impaired activation of CD8+ T-cells upon virus infection. This adds important mechanistic insight on how cigarette smoke mediates increased susceptibility of smokers and COPD patients to viral infections.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Humanos , Linfócitos T CD8-Positivos , Antivirais , Fumar Cigarros/efeitos adversos , Antígenos de Histocompatibilidade Classe I/metabolismo , Citocinas , Epitopos , Imunidade
5.
Biomolecules ; 13(4)2023 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-37189345

RESUMO

Laron syndrome (LS) is a rare genetic disorder characterized by low levels of insulin-like growth factor 1 (IGF1) and high levels of growth hormone (GH) due to mutations in the growth hormone receptor gene (GHR). A GHR-knockout (GHR-KO) pig was developed as a model for LS, which displays many of the same features as humans with LS-like transient juvenile hypoglycemia. This study aimed to investigate the effects of impaired GHR signaling on immune functions and immunometabolism in GHR-KO pigs. GHR are located on various cell types of the immune system. Therefore, we investigated lymphocyte subsets, proliferative and respiratory capacity of peripheral blood mononuclear cells (PBMCs), proteome profiles of CD4- and CD4+ lymphocytes and IFN-α serum levels between wild-type (WT) controls and GHR-KO pigs, which revealed significant differences in the relative proportion of the CD4+CD8α- subpopulation and in IFN-α levels. We detected no significant difference in the respiratory capacity and the capacity for polyclonal stimulation in PBMCs between the two groups. But proteome analysis of CD4+ and CD4- lymphocyte populations revealed multiple significant protein abundance differences between GHR-KO and WT pigs, involving pathways related to amino acid metabolism, beta-oxidation of fatty acids, insulin secretion signaling, and oxidative phosphorylation. This study highlights the potential use of GHR-KO pigs as a model for studying the effects of impaired GHR signaling on immune functions.


Assuntos
Síndrome de Laron , Receptores da Somatotropina , Humanos , Animais , Suínos , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Síndrome de Laron/genética , Síndrome de Laron/metabolismo , Leucócitos Mononucleares/metabolismo , Proteoma , Hormônio do Crescimento/metabolismo
6.
Biomedicines ; 12(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275380

RESUMO

The perception of circulating granulocytes as cells with a predetermined immune response mainly triggered by pathogens is evolving, recognizing their functional heterogeneity and adaptability, particularly within the neutrophil subset. The involvement of these cells in the pathophysiology of autoimmune uveitis has become increasingly clear, yet their exact role remains elusive. We used an equine model for autoimmune-mediated recurrent pan-uveitis to investigate early responses of granulocytes in different inflammatory environments. For this purpose, we performed differential proteomics on granulocytes from healthy and diseased horses stimulated with IL8, LPS, or PMA. Compared to healthy horses, granulocytes from the recurrent uveitis model significantly changed the cellular abundance of 384 proteins, with a considerable number of specific changes for each stimulant. To gain more insight into the functional impact of these stimulant-specific proteome changes in ERU pathogenesis, we used Ingenuity Pathway Analysis for pathway enrichment. This resulted in specific reaction patterns for each stimulant, with IL8 predominantly promoting Class I MHC-mediated antigen processing and presentation, LPS enhancing processes in phospholipid biosynthesis, and PMA, clearly inducing neutrophil degranulation. These findings shed light on the remarkably differentiated responses of neutrophils, offering valuable insights into their functional heterogeneity in a T-cell-driven disease. Raw data are available via ProteomeXchange with identifier PXD013648.

7.
Metabolites ; 12(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36295826

RESUMO

Bovine paratuberculosis is a serious chronic disease of the gastrointestinal tract that causes economic losses and dramatically affects animal health in livestock. The underlying infectious agent, Mycobacterium avium subspecies paratuberculosis (MAP), cannot reliably be detected by standard diagnostic tests due to the long asymptomatic disease stage. The aim of this study was to detect proteomic changes in peripheral blood mononuclear cells (PBMC) from cows of the same herd with different MAP infection status after co-incubation with viable MAP in vitro using label-free LC-MS/MS. In our proteomic discovery experiment, we detected 2631 differentially regulated proteins between cows with negative MAP infection status (so-called MAP-resistant cows) and cows with positive MAP infection status (so-called persistently MAP-infected cows). In MAP-resistant cows, we detected enriched immune-related signaling pathways for TLR2 and MHC class II component proteins, among others, indicating a successful defensive immune response of the cows to MAP. In contrast, persistently MAP-infected cows were not directly enriched in immune-related signaling pathways associated with ITGA2B and KCNMA1, among others. The introduction of these distinct immune responses contributes to a better understanding of the bovine immune response and mechanisms of susceptibility to MAP.

8.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076947

RESUMO

In the pathophysiology of autoimmune-mediated uveitis, granulocytes have emerged as possible disease mediators and were shown to be pre-activated in equine recurrent uveitis (ERU), a spontaneous disease model. We therefore used granulocytes from ERU horses to identify early molecular mechanisms involved in this dysregulated innate immune response. Primary granulocytes from healthy and ERU horses were stimulated with IL8, and cellular response was analyzed with differential proteomics, which revealed significant differences in protein abundance of 170 proteins in ERU. Subsequent ingenuity pathway analysis identified three activated canonical pathways "PKA signaling", "PTEN signaling" and "leukocyte extravasation". Clustered to the leukocyte extravasation pathway, we found the membrane-type GPI-anchored protease MMP25, which was increased in IL8 stimulated ERU granulocytes. These findings point to MMP25 as a possible regulator of granulocyte extravasation in uveitis and a role of this molecule in the impaired integrity of the blood-retina-barrier. In conclusion, our analyses show a clearly divergent reaction profile of pre-activated granulocytes upon IL8 stimulation and provide basic information for further in-depth studies on early granulocyte activation in non-infectious ocular diseases. This may be of interest for the development of new approaches in uveitis diagnostics and therapy. Raw data are available via ProteomeXchange with identifier PXD013648.


Assuntos
Doenças Autoimunes , Doenças dos Cavalos , Uveíte , Animais , Granulócitos/metabolismo , Doenças dos Cavalos/metabolismo , Cavalos , Interleucina-8 , Proteômica , Recidiva , Uveíte/metabolismo
9.
Metabolites ; 12(3)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35323697

RESUMO

In recent years, a lack of stability of dairy products with extended shelf life (e.g., yoghurt products, UHT desserts) has occurred, with the corresponding products liquefying significantly after days or weeks. This project aimed to identify the enzymes responsible for the liquefaction of the affected products based on differential proteomic analyses. No evidence was found for the presence of starch-degrading bacteria in the affected products. With zymography and proteome analysis, we detected the cause of liquefaction in a pudding by contamination of its aroma component with an engineered amylolytic enzyme, cyclomaltodextrin glucanotransferase (CGTase) from Thermoanaerobacterium thermosulfurigenes. In addition, we detected contamination with Pseudomonas-derived proteolytic ATP-dependent Clp protease in one pudding batch and proteases in technically used amylases, which degraded ß-caseins in another batch. Identification of these agents with liquefying properties in dairy products are useful for adjustment of production protocols and/or composition of additives, and thus shelf life extension.

10.
Proteomes ; 10(1)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35225986

RESUMO

We recently identified a deviant bovine immune phenotype characterized by hyperproliferation of lymphocytes after polyclonal stimulation. This phenotype was first discovered in dams that responded to PregSure BVD vaccination by producing pathological antibodies, triggering the fatal disease "bovine neonatal pancytopenia" in calves. The aim of the study was to gain deeper insights into molecular processes occurring in lymphocytes of immune phenotypes and the effect on their secretome after immune stimulation. Two discovery proteomic experiments were performed with unstimulated and Pokeweed Mitogen (PWM) stimulated lymphocytes, using label-free LC-MS/MS. In lymphocytes, 2447 proteins were quantified, and 1204 proteins were quantified in the secretome. Quantitative proteome analysis of immune deviant and control samples after PWM stimulation revealed clear differences. The increase in abundance of IL17A, IL17F, IL8, CCL5, LRRC59, and CLIC4 was higher in controls through mitogenic stimulation. In contrast, the abundance of IFNγ, IL2, IL2RA, CD83, and CD200 increased significantly more in immune deviant lymphocytes. Additional pathway enrichment analysis of differentially secreted proteins also yielded fundamental differences between the immune phenotypes. Our study provides a comprehensive dataset, which gives novel insights into proteome changes of lymphocytes from different bovine immune phenotypes. These differences point to the development of diverse immune responses of bovine immune phenotypes after immune stimulation.

11.
Front Pharmacol ; 12: 771571, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776983

RESUMO

Müller cells are the main macroglial cells of the retina exerting a wealth of functions to maintain retinal homoeostasis. Upon pathological changes in the retina, they become gliotic with both protective and detrimental consequences. Accumulating data also provide evidence for a pivotal role of Müller cells in the pathogenesis of diabetic retinopathy (DR). While microglial cells, the resident immune cells of the retina are considered as main players in inflammatory processes associated with DR, the implication of activated Müller cells in chronic retinal inflammation remains to be elucidated. In order to assess the signaling capacity of Müller cells and their role in retinal inflammation, we performed in-depth proteomic analysis of Müller cell proteomes and secretomes after stimulation with INFγ, TNFα, IL-4, IL-6, IL-10, VEGF, TGFß1, TGFß2 and TGFß3. We used both, primary porcine Müller cells and the human Müller cell line MIO-M1 for our hypothesis generating approach. Our results point towards an intense signaling capacity of Müller cells, which reacted in a highly discriminating manner upon treatment with different cytokines. Stimulation of Müller cells resulted in a primarily pro-inflammatory phenotype with secretion of cytokines and components of the complement system. Furthermore, we observed evidence for mitochondrial dysfunction, implying oxidative stress after treatment with the various cytokines. Finally, both MIO-M1 cells and primary porcine Müller cells showed several characteristics of atypical antigen-presenting cells, as they are capable of inducing MHC class I and MHC class II with co-stimulatory molecules. In line with this, they express proteins associated with formation and maturation of phagosomes. Thus, our findings underline the importance of Müller cell signaling in the inflamed retina, indicating an active role in chronic retinal inflammation.

12.
Metabolites ; 11(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34436489

RESUMO

Mycobacterium avium subspecies paratuberculosis (MAP) are detectable viable in milk and other dairy products. The molecular mechanisms allowing the adaptation of MAP in these products are still poorly understood. To obtain information about respective adaptation of MAP in milk, we differentially analyzed the proteomes of MAP cultivated for 48 h in either milk at 37 °C or 4 °C or Middlebrook 7H9 broth as a control. From a total of 2197 MAP proteins identified, 242 proteins were at least fivefold higher in abundance in milk. MAP responded to the nutritional shortage in milk with upregulation of 32% of proteins with function in metabolism and 17% in fatty acid metabolism/synthesis. Additionally, MAP upregulated clusters of 19% proteins with roles in stress responses and immune evasion, 19% in transcription/translation, and 13% in bacterial cell wall synthesis. Dut, MmpL4_1, and RecA were only detected in MAP incubated in milk, pointing to very important roles of these proteins for MAP coping with a stressful environment. Dut is essential and plays an exclusive role for growth, MmpL4_1 for virulence through secretion of specific lipids, and RecA for SOS response of mycobacteria. Further, 35 candidates with stable expression in all conditions were detected, which could serve as targets for detection. Data are available via ProteomeXchange with identifier PXD027444.

13.
Front Immunol ; 12: 601619, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385998

RESUMO

As one of the leading causes of blindness worldwide, uveitis is an important disease. The exact pathogenesis of autoimmune uveitis is not entirely elucidated to date. Equine recurrent uveitis (ERU) represents the only spontaneous animal model for autoimmune uveitis in humans. As the metabolism of immune cells is an emerging field in research and gains more and more significance to take part in the pathogenesis of various diseases, we conducted experiments to investigate the metabolism of immune cells of ERU cases and healthy controls. To our knowledge, the link between a deviant immunometabolism and the pathogenesis of autoimmune uveitis was not investigated so far. We showed that PBMC of ERU cases had a more active metabolic phenotype in basal state by upregulating both the oxidative phosphorylation and the glycolytic pathway. We further revealed an increased compensatory glycolytic rate of PBMC and CD4+ T cells of ERU cases under mitochondrial stress conditions. These findings are in line with metabolic alterations of immune cells in other autoimmune diseases and basic research, where it was shown that activated immune cells have an increased need of energy and molecule demand for their effector function. We demonstrated a clear difference in the metabolic phenotypes of PBMC and, more specifically, CD4+ T cells of ERU cases and controls. These findings are another important step in understanding the pathogenesis of ERU and figuratively, human autoimmune uveitis.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Leucócitos Mononucleares/metabolismo , Uveíte/imunologia , Animais , Modelos Animais de Doenças , Glicólise , Cavalos , Humanos , Leucócitos Mononucleares/imunologia , Ativação Linfocitária , Fosforilação Oxidativa , Fenótipo
14.
PeerJ ; 9: e11316, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046254

RESUMO

BACKGROUND: The underlying pathomechanisms in diabetic retinopathy (DR) remain incompletely understood. The aim of this study was to add to the current knowledge about the particular role of retinal Mller glial cells (RMG) in the initial processes of DR. METHODS: Applying a quantitative proteomic workflow, we investigated changes of primary porcine RMG under short term high glucose treatment as well as glycolysis inhibition treatment. RESULTS: We revealed significant changes in RMG proteome primarily in proteins building the extracellular matrix (ECM) indicating fundamental remodeling processes of ECM as novel rapid response to high glucose treatment. Among others, Osteopontin (SPP1) as well as its interacting integrins were significantly downregulated and organotypic retinal explant culture confirmed the selective loss of SPP1 in RMG upon treatment. Since SPP1 in the retina has been described neuroprotective for photoreceptors and functions against experimentally induced cell swelling, its rapid loss under diabetic conditions may point to a direct involvement of RMG to the early neurodegenerative processes driving DR. Data are available via ProteomeXchange with identifier PXD015879.

15.
Cells ; 10(3)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806940

RESUMO

Retinal Müller glial cells (RMG) are involved in virtually every retinal disease; however, the role of these glial cells in neuroinflammation is still poorly understood. Since cell surface proteins play a decisive role in immune system signaling pathways, this study aimed at characterizing the changes of the cell surface proteome of RMG after incubation with prototype immune system stimulant lipopolysaccharide (LPS). While mass spectrometric analysis of the human Müller glia cell line MIO-M1 revealed 507 cell surface proteins in total, with 18 proteins significantly more abundant after stimulation (ratio ≥ 2), the surfaceome of primary RMG comprised 1425 proteins, among them 79 proteins with significantly higher abundance in the stimulated state. Pathway analysis revealed notable association with immune system pathways such as "antigen presentation", "immunoregulatory interactions between a lymphoid and a non-lymphoid cell" and "cell migration". We could demonstrate a higher abundance of proteins that are usually ascribed to antigen-presenting cells (APCs) and function to interact with T-cells, suggesting that activated RMG might act as atypical APCs in the course of ocular neuroinflammation. Our data provide a detailed description of the unstimulated and stimulated RMG surfaceome and offer fundamental insights regarding the capacity of RMG to actively participate in neuroinflammation in the retina.


Assuntos
Membrana Celular/metabolismo , Células Ependimogliais/imunologia , Lipopolissacarídeos/farmacologia , Retina/imunologia , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Células Ependimogliais/efeitos dos fármacos , Ontologia Genética , Cavalos , Humanos , Sistema Imunitário/metabolismo , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Proteoma/metabolismo
16.
Glycobiology ; 31(7): 873-883, 2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-33677598

RESUMO

Desialylation of cell surface glycoproteins carried out by sialidases affects various immunological processes. However, the role of neuraminidase 1 (NEU1), one of the four mammalian sialidases, in inflammation and autoimmune disease is not completely unraveled to date. In this study, we analyzed the retinal expression of NEU1 in equine recurrent uveitis (ERU), a spontaneous animal model for autoimmune uveitis. Mass spectrometry revealed significantly higher abundance of NEU1 in retinal Müller glial cells (RMG) of ERU-diseased horses compared to healthy controls. Immunohistochemistry uncovered NEU1 expression along the whole Müller cell body in healthy and uveitic states and confirmed higher abundance in inflamed retina. Müller glial cells are the principal macroglial cells of the retina and play a crucial role in uveitis pathogenesis. To determine whether higher expression levels of NEU1 in uveitic RMG correlate with the desialylation of retinal cells, we performed lectin-binding assays with sialic acid-specific lectins. Through these experiments, we could demonstrate a profound loss of both α2-3- and α2-6-linked terminal sialic acids in uveitis. Hence, we hypothesize that the higher abundance of NEU1 in uveitic RMG plays an important role in the pathogenesis of uveitis by desialylation of retinal cells. As RMG become activated in the course of uveitis and actively promote inflammation, we propose that NEU1 might represent a novel activation marker for inflammatory RMG. Our data provide novel insights in the expression and implication of NEU1 in inflammation and autoimmune disease.


Assuntos
Doenças Autoimunes , Uveíte , Animais , Doenças Autoimunes/veterinária , Cavalos , Imuno-Histoquímica , Mamíferos , Neurônios/metabolismo , Retina/química , Retina/metabolismo , Uveíte/metabolismo , Uveíte/veterinária
17.
J Proteomics ; 230: 103989, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-32977044

RESUMO

Equine recurrent uveitis (ERU) is a spontaneous, remitting-relapsing autoimmune disease driven by the adaptive immune system. Although T cells are described as the main effector cells in pathogenesis, granulocytes have also emerged as possible disease mediators. To explore the role of these innate immune cells, we investigated the whole cell proteome of granulocytes from equine recurrent uveitis cases and healthy controls. Among the 2362 proteins identified by mass spectrometry, we found 96 proteins with significantly changed abundance between groups (p < 0.05, fold change >1.2), representing 4.1% of total granulocyte proteome. Within these differential identifications, calgranulin B, a protein associated with pathogenesis in other autoimmune diseases, showed highest abundance in equine recurrent uveitis (18 fold). For a better interpretation of the results from our hypothesis-generating approach, we added a threshold for biological significance (ratio ERU/controls >2: 36 proteins) to the proteins with increased abundance in equine recurrent uveitis and analyzed their allocation to the subsets within the Immune System superpathway. The 36 differentially abundant proteins predominantly associated to RAF/MAP kinase cascade, MHC-I-mediated antigen presentation and neutrophil degranulation, suggesting a latently activated phenotype of these innate immune cells in disease. Raw data are available via ProteomeXchange with identifier PXD013648. SIGNIFICANCE: Our study provides new insights into the protein repertoire of primary equine granulocytes and identifies protein abundance changes associated to equine recurrent uveitis (ERU), an organ specific, spontaneously occurring autoimmune disease. We show that granulocyte proteins with increased abundance in ERU strongly associate to RAF/MAP kinase signaling, MHC-I antigen presentation and neutrophil degranulation, pointing to a more activated state of these cells in ERU cases. Since cells were obtained in quiescent stage of disease, latent activation of granulocytes underlines the role of these innate immune cells in ERU. These findings are highly relevant for veterinary medicine, further establishing the importance of granulocytes in this T cell-driven autoimmune disease. Moreover, they have translational quality for autoimmune uveitis in man, due to strong similarity in disease occurrence, progression and pathogenesis.


Assuntos
Doenças Autoimunes , Doenças dos Cavalos , Uveíte , Animais , Doenças Autoimunes/veterinária , Granulócitos , Cavalos , Proteoma , Recidiva , Uveíte/veterinária
18.
J Proteomics ; 225: 103876, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32534212

RESUMO

In life sciences, antibodies are among the most commonly used tools for identifying, tracking, quantifying and isolating molecules, mainly proteins. However, it has recently become clear that antibodies often fall short with respect to specificity and selectivity and in many cases target proteins are not even known. When commercial availability of antibodies is scarce, e.g. for targeting proteins from farm animals, researchers face additional challenges: they often have to rely on cross-reactive antibodies, which are poorly characterized for their exact target, their actual cross-reactivity and the desired application. In this study, we aimed at identifying the true target of mouse monoclonal antibody 8F2, which was generated against chicken PBMC and used for decades in research, while it's actual target molecule remained unknown. We used 8F2 antibody for immunoprecipitation in chicken PBMC and subsequently identified its true target as CD11d, which was never described in chicken lymphocytes before, by quantitative LC-MSMS. The most abundant interactor of CD11d was identified as integrin beta 2. The existence of this alpha integrin was therefore clearly proven on protein level and provides a first basis to further assess the role of CD11d in chickens in future studies. Data are available via ProteomeXchange with identifier PXD017248. SIGNIFICANCE: Our studies determined CD11d as the true target of a previously uncharacterized mouse monoclonal antibody 8F2, generated against chicken peripheral blood derived mononuclear cells (PBMC). This is therefore now first member of alpha integrins in chickens, that existence was now clearly identified on protein level. The additional identification of CD11d interactors provides information on integrin-dependent regulation of signaling networks, allowing further functional studies.


Assuntos
Galinhas , Leucócitos Mononucleares , Animais , Anticorpos Monoclonais , Antígenos CD18 , Cadeias alfa de Integrinas , Camundongos
19.
J Proteomics ; 224: 103843, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32470542

RESUMO

INSC94Y transgenic pigs develop a stable diabetic phenotype early after birth and therefore allow studying the influence of hyperglycemia on primary immune cells in an early stage of diabetes mellitus in vivo. Since immune response is altered in diabetes mellitus, with deviant neutrophil function discussed as one of the possible causes in humans and mouse models, we investigated these immune cells in INSC94Y transgenic pigs and wild type controls at protein level. A total of 2371 proteins were quantified by label-free LC-MS/MS. Subsequent differential proteome analysis of transgenic animals and controls revealed clear differences in protein abundances, indicating a deviant behavior of granulocytes in the diabetic state. Interestingly, abundance of myosin regulatory light chain 9 (MLC-2C) was increased 5-fold in cells of diabetic pigs. MLC-2C directly affects cell contractility by regulating myosin ATPase activity, can act as transcription factor and was also associated with inflammation. It might contribute to impaired neutrophil cell adhesion, migration and phagocytosis. Our study provides novel insights into proteome changes in neutrophils from a large animal model for permanent neonatal diabetes mellitus and points to dysregulation of neutrophil function even in an early stage of this disease. Data are available via ProteomeXchange with identifier PXD017274. SIGNIFICANCE: Our studies provide novel basic information about the neutrophil proteome of pigs and contribute to a better understanding of molecular mechanisms involved in altered immune cell function in an early stage diabetes. We demonstrate proteins that are dysregulated in neutrophils from a transgenic diabetic pig and have not been described in this context so far. The data presented here are highly relevant for veterinary medicine and have translational quality for diabetes in humans.


Assuntos
Diabetes Mellitus , Neutrófilos , Animais , Cromatografia Líquida , Proteoma , Suínos , Espectrometria de Massas em Tandem
20.
Front Cell Dev Biol ; 8: 101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211402

RESUMO

The participating signals and structures that enable primary immune cells migrating within dense tissues are not completely revealed until now. Especially in autoimmune diseases, mostly unknown mechanisms facilitate autoreactive immune cells to migrate to endogenous tissues, infiltrating and harming organ-specific structures. In order to gain deeper insights into the migratory behavior of primary autoreactive immune cells, we examined peripheral blood-derived lymphocytes (PBLs) of horses with equine recurrent uveitis (ERU), a spontaneous animal model for autoimmune uveitis in humans. In this study, we used a three-dimensional collagen I hydrogel matrix and monitored live-cell migration of primary lymphocytes as a reaction to different chemoattractants such as fetal calf serum (FCS), cytokines interleukin-4 (IL-4), and interferon-γ (IFN-γ), and a specific uveitis autoantigen, cellular retinaldehyde binding protein (CRALBP). Through these experiments, we uncovered distinct differences between PBLs from ERU cases and PBLs from healthy animals, with significantly higher cell motility, cell speed, and straightness during migration of PBLs from ERU horses. Furthermore, we emphasized the significance of expression levels and cellular localization of septin 7, a membrane-interacting protein with decreased abundance in PBLs of autoimmune cases. To underline the importance of septin 7 expression changes and the possible contribution to migratory behavior in autoreactive immune cells, we used forchlorfenuron (FCF) as a reversible inhibitor of septin structures. FCF-treated cells showed more directed migration through dense tissue and revealed aberrant septin 7 and F-actin structures along with different protein distribution and translocalization of the latter, uncovered by immunochemistry. Hence, we propose that septin 7 and interacting molecules play a pivotal role in the organization and regulation of cell shaping and migration. With our findings, we contribute to gaining deeper insights into the migratory behavior and septin 7-dependent cytoskeletal reorganization of immune cells in organ-specific autoimmune diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...