Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(3): 595-613, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38347104

RESUMO

Microbial breakdown of organic matter is one of the most important processes on Earth, yet the controls of decomposition are poorly understood. Here we track 36 terrestrial human cadavers in three locations and show that a phylogenetically distinct, interdomain microbial network assembles during decomposition despite selection effects of location, climate and season. We generated a metagenome-assembled genome library from cadaver-associated soils and integrated it with metabolomics data to identify links between taxonomy and function. This universal network of microbial decomposers is characterized by cross-feeding to metabolize labile decomposition products. The key bacterial and fungal decomposers are rare across non-decomposition environments and appear unique to the breakdown of terrestrial decaying flesh, including humans, swine, mice and cattle, with insects as likely important vectors for dispersal. The observed lockstep of microbial interactions further underlies a robust microbial forensic tool with the potential to aid predictions of the time since death.


Assuntos
Consórcios Microbianos , Microbiologia do Solo , Camundongos , Humanos , Animais , Suínos , Bovinos , Cadáver , Metagenoma , Bactérias
2.
J Microbiol Methods ; 211: 106740, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37301376

RESUMO

Bacteria containing the enzyme 1-aminocyclopropane-1-carboxylate deaminase (ACCD+) can reduce plant ethylene levels and increase root development and elongation resulting in increased resiliency to drought and other plant stressors. Although these bacteria are ubiquitous in the soil, non-culture-based methods for their enumeration and identification are not well developed. In this study we compare two culture-independent approaches for identifying ACCD+ bacteria. First, quantitative PCR (qPCR) and direct acdS sequencing with newly designed gene-specific primers; and second, phylogenetic construction of 16S rRNA amplicon libraries with the PICRUSt2 tool. Using soils from eastern Colorado, we showed complementary yet differing results in ACCD+ abundance and community structure responding to water availability. Across all sites, gene abundances estimated from qPCR with the acdS gene-specific primers and phylogenetic reconstruction using PICRUSt2 were significantly correlated. However, PICRUSt2 identified members of the Acidobacteria, Proteobacteria, and Bacteroidetes phyla (now known as Acidobacteriota, Pseudomonadota, and Bacteroidota according to the International Code of Nomenclature of Prokaryotes) as ACCD+ bacteria, whereas the acdS primers amplified only members of the Proteobacteria phyla. Despite these differences, both measures showed that bacterial abundance of ACCD+ decreased as soil water content decreased along a potential evapotranspiration (PET) gradient at three sites in eastern Colorado. One major advantage of using 16S sequencing and PICRUSt2 in metagenomic studies is the ability to get a potential functional profile of all known KEGG (Kyoto Encyclopedia of Genes and Genomes) enzymes within the bacterial community of a single soil sample. The 16S-PICRUSt2 method paints a broader picture of the biological and biochemical function of the soil microbiome compared to direct acdS sequencing; however, phylogenetic analysis based on 16S gene relatedness may not reflect that of the functional gene of interest.


Assuntos
Bactérias , Carbono-Carbono Liases , Filogenia , RNA Ribossômico 16S/genética , Bactérias/genética , Carbono-Carbono Liases/genética , Água , Microbiologia do Solo
3.
Forensic Sci Int ; 340: 111425, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36087369

RESUMO

During decomposition, flies interact with the remains to lay eggs and acquire nutrients, and in the process, they bring their microbes with them. While it is known that flies have their own unique core microbiome, it is not known if flies associated with human cadavers have a different core microbiome. Differences in the fly microbiome may influence the types of microbes transmitted from the flies to the cadaver, therefore potentially affecting assembly of the human decomposer microbiome. The first purpose of this study was to characterize the microbiome of flies associated with human cadavers by fly organ and season. This is because fly interactions with cadavers vary by season, and because it is likely that external fly organs [i.e., the labellum and tarsi] make more direct contact and are likely involved in increased mechanical transmission with the cadaver than internal organs such as the oocyte. The second purpose of this study was to determine if the fly microbes contribute to the human decomposer microbiome. To accomplish these aims, 10 human cadavers were placed outdoors across three seasons and allowed to decompose. A total of 40 flies that landed on the cadaver were collected and dissected by the labellum, tarsi, and oocyte. In addition to fly collections, samples from the cadavers were collected using a sterile swab at sites including the cheek of the face, inner cheek, bicep, torso, and anus. Overall, it was shown that flies associated with human cadavers have a similar microbiome to flies from previous studies that were not associated with human cadavers. However, there are differences in the microbiome between seasons and fly parts. We also show evidence that flies act as a microbial source to the human decomposer microbiome, which is important for understanding the ecological mechanisms of human cadaver microbial community assembly.


Assuntos
Dípteros , Microbiota , Animais , Cadáver , Humanos , Estações do Ano
4.
Forensic Sci Int ; 323: 110782, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33894685

RESUMO

Vertebrate decomposition leads to an efflux of fluids rich with biochemicals and microbes from the carcass into the surrounding soil affecting the endogenous soil bacterial community. These perturbations are detectable in soils associated with carcasses (gravesoil) and influence soil bacterial ecology for years after the decomposition event, but it is unknown for how long. Measuring these impacts over extended timescales is critical to expanding vertebrate decomposition's role in the ecosystem and may provide useful information to forensic science. Using 16S rRNA gene amplicon data, this study surveyed bacterial composition in terrestrial soils associated with surface-exposed swine decomposition for 10 years after carcass placement. This pilot study utilizes the increased statistical power associated with repeated measure/within-subjects sampling to analyze bacterial diversity trends over time. Our results demonstrate that the soil bacterial diversity was significantly impacted by decomposition, with this impact being localized to the area underneath the carcass. Bacterial community dissimilarity was greatest 12 months postmortem before beginning recovery. Additionally, random forest regressions were utilized to determine 10 important genera for distinguishing decomposition timepoints, an important component of forensic investigations. Of these 10 genera, four were further analyzed for their significant relative abundance shifts underneath the carcass. This pilot study helps expand the current knowledge of long-term effects of carcass decomposition on soil bacterial communities, and is the first to our knowledge to characterize these communities temporally from placement through a decade of decomposition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...