Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38953218

RESUMO

The Chemical Assessment of Surfaces and Air (CASA) study aimed to understand how chemicals transform in the indoor environment using perturbations (e.g., cooking, cleaning) or additions of indoor and outdoor pollutants in a well-controlled test house. Chemical additions ranged from individual compounds (e.g., gaseous ammonia or ozone) to more complex mixtures (e.g., a wildfire smoke proxy and a commercial pesticide). Physical perturbations included varying temperature, ventilation rates, and relative humidity. The objectives for CASA included understanding (i) how outdoor air pollution impacts indoor air chemistry, (ii) how wildfire smoke transports and transforms indoors, (iii) how gases and particles interact with building surfaces, and (iv) how indoor environmental conditions impact indoor chemistry. Further, the combined measurements under unperturbed and experimental conditions enable investigation of mitigation strategies following outdoor and indoor air pollution events. A comprehensive suite of instruments measured different chemical components in the gas, particle, and surface phases throughout the study. We provide an overview of the test house, instrumentation, experimental design, and initial observations - including the role of humidity in controlling the air concentrations of many semi-volatile organic compounds, the potential for ozone to generate indoor nitrogen pentoxide (N2O5), the differences in microbial composition between the test house and other occupied buildings, and the complexity of deposited particles and gases on different indoor surfaces.

2.
Environ Sci Process Impacts ; 26(3): 582-594, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38305769

RESUMO

Dibasic esters (DBEs) have recently become emerging indoor air pollutants due to their usage as a solvent for mixtures of paints and coatings. In this study, we explored the adsorption/desorption kinetics, heterogeneous interactions, and chemical transformations of dimethyl succinate (DMS, C6H10O4), a component of commercial dibasic ester solvent mixtures, on indoor relevant surfaces using transmission Fourier-transform infrared (FTIR) spectroscopy and high-resolution mass spectrometry (HRMS). Silica (SiO2) and rutile (TiO2) were used as proxies for window glass, and an active component in paint and self-cleaning surfaces, respectively. FTIR spectroscopy of these surfaces shows that DMS can interact with SiO2 and TiO2 through hydrogen bonding between the carbonyl oxygen and surface hydroxyl groups. The kinetics show fast adsorption of DMS onto these surfaces followed by slow desorption. Furthermore, new products formed observed on TiO2 surfaces in addition to molecularly adsorbed DMS. In particular, succinate (C5H7O) was observed binding to the surface in a bidentate chelating coordination mode as indicated by the appearance of νas(COO-) and νs(COO-) bands in the FTIR spectra. These absorption bands grow in intensity over time and the resulting product remains strongly adsorbed on the surface. The formation of adsorbed succinate is a result of a reaction with DMS on Lewis acid sites of the TiO2 surface. Overall, the slow desorption of these adsorbed species indicates that indoor surfaces can become long term reservoirs for dibasic esters and their surface products. Moreover, in the presence of ∼50% relative humidity, water displaces outer layers of adsorbed DMS on SiO2 and TiO2, while having no impact on the more strongly bound surface species.


Assuntos
Dióxido de Silício , Água , Dióxido de Silício/química , Água/química , Espectroscopia de Infravermelho com Transformada de Fourier , Solventes , Succinatos , Adsorção
3.
Environ Sci Technol ; 57(49): 20699-20707, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38010858

RESUMO

The use of household bleach cleaning products results in emissions of highly oxidative gaseous species, such as hypochlorous acid (HOCl) and chlorine (Cl2). These species readily react with volatile organic compounds (VOCs), such as limonene, one of the most abundant compounds found in indoor enviroments. In this study, reactions of HOCl/Cl2 with limonene in the gas phase and on indoor relevant surfaces were investigated. Using an environmental Teflon chamber, we show that silica (SiO2), a proxy for window glass, and rutile (TiO2), a component of paint and self-cleaning surfaces, act as a reservoir for adsorption of gas-phase products formed between HOCl/Cl2 and limonene. Furthermore, high-resolution mass spectrometry (HRMS) shows that the gas-phase reaction products of HOCl/Cl2 and limonene readily adsorb on both SiO2 and TiO2. Surface-mediated reactions can also occur, leading to the formation of new chlorine- and oxygen-containing products. Transmission Fourier-transform infrared (FTIR) spectroscopy of adsorption and desorption of bleach and terpene oxidation products indicates that these chlorine- and oxygen-containing products strongly adsorb on both SiO2 and TiO2 surfaces for days, providing potential sources of human exposure and sinks for additional heterogeneous reactions.


Assuntos
Poluição do Ar em Ambientes Fechados , Ácido Hipocloroso , Humanos , Limoneno , Cloro , Halogenação , Dióxido de Silício , Terpenos/química , Gases , Oxigênio
4.
ACS Nano ; 11(11): 10924-10934, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29088544

RESUMO

Detonation nanodiamonds (DNDs) have unique physical and chemical properties that make them invaluable in many applications. However, DNDs are generally assumed to show weak fluorescence, if any, unless chemically modified with organic molecules. We demonstrate that detonation nanodiamonds exhibit significant and excitation-wavelength-dependent fluorescence from the visible to the near-infrared spectral region above 800 nm, even without the engraftment of organic molecules to their surfaces. We show that this fluorescence depends on the surface functionality of the DND particles. The investigated functionalized DNDs, produced from the same purified DND as well as the as-received polyfunctional starting material, are hydrogen, hydroxyl, carboxyl, ethylenediamine, and octadecylamine-terminated. All DNDs are investigated in solution and on a silicon wafer substrate and compared to fluorescent high-pressure high-temperature nanodiamonds. The brightest fluorescence is observed from octadecylamine-functionalized particles and is more than 100 times brighter than the least fluorescent particles, carboxylated DNDs. The majority of photons emitted by all particle types likely originates from non-diamond carbon. However, we locally find bright and photostable fluorescence from nitrogen-vacancy centers in diamond in hydrogenated, hydroxylated, and carboxylated detonation nanodiamonds. Our results contribute to understanding the effects of surface chemistry on the fluorescence of DNDs and enable the exploration of the fluorescent properties of DNDs for applications in theranostics as nontoxic fluorescent labels, sensors, nanoscale tracers, and many others where chemically stable and brightly fluorescent nanoparticles with tailorable surface chemistry are needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...