Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomol NMR Assign ; 16(1): 159-164, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35320499

RESUMO

Regulator of telomere elongation helicase 1 (RTEL1) is an Fe-S cluster containing DNA helicase that plays important roles in telomere DNA maintenance, DNA repair, and genomic stability. It is a modular protein comprising an N-terminal helicase domain, two tandem harmonin homology domains 1 & 2 (HHD1 and HHD2), and a C-terminal C4C4 type RING domain. The N-terminal helicase domain disassembles the telomere t/D-loop and unwinds the G-quadruplex via its helicase activity. The C-terminal RING domain interacts with telomere DNA binding protein TRF2 and helps RTEL1 recruitment to the telomere. The tandem HHD1 and HHD2 are characterized as a putative protein-protein interaction domain and have recently been shown to interact with a DNA repair protein SLX4. Several mutations associated with Hoyeraal-Hreidarsson syndrome and pulmonary fibrosis have been found in HHD1 and HHD2 of RTEL1. However, these domains have not been characterized for their structures. We have expressed and purified HHD1 and HHD2 of human RTEL1 for their characterization using solution NMR spectroscopy. Here, we report near complete backbone and sidechain 1H, 13C and 15N chemical shift assignments and secondary structure of the HHD1 and HHD2 domains of human RTEL1.


Assuntos
Disceratose Congênita , Deficiência Intelectual , Microcefalia , DNA Helicases/química , Disceratose Congênita/genética , Disceratose Congênita/metabolismo , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Microcefalia/genética , Microcefalia/metabolismo , Ressonância Magnética Nuclear Biomolecular
2.
FEMS Yeast Res ; 18(2)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29438506

RESUMO

Iron deprivation induces transcription of genes required for iron uptake, and transcription factor Aft1 and Aft2 mediate this by regulating transcriptional program in Saccharomyces cerevisiae. Iron-dependent Fe(II) and 2-oxoglutarate-dependent dioxygenase family proteins are involved in various cellular pathways including DNA alkylation damage repair. Whether Aft1/Aft2 are required for DNA alkylation repair is currently unknown. In this report, we have analyzed DNA alkylation repair under iron-deprived condition. Saccharomyces cerevisiae Tpa1 is a member of Fe(II) and 2-oxoglutarate-dependent dioxygenase family, and we show that deletion of AFT1 and AFT2 genes affects Tpa1 function resulting in sensitivity to alkylating agent methyl methane sulfonate (MMS). Deletion of AFT1 and AFT2 along with base excision repair pathway DNA glycosylase MAG1 renders the aft1Δaft2Δmag1Δ mutant highly sensitive to MMS. We have further studied effect of iron depletion by replacing S. cerevisiae Tpa1 with Escherichia coli AlkB and human AlkBH3. We observed that the activity of AlkB and AlkBH3 is also diminished similarly when present in aft1Δaft2Δ background as evident by sensitivity to MMS.


Assuntos
Reparo do DNA , Dioxigenases/metabolismo , Compostos Ferrosos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ativação Enzimática , Deficiências de Ferro , Viabilidade Microbiana , Mutação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...