Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biotechnol ; 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999921

RESUMO

Fresh water is one of the essential sources of life, and its requirement has increased in the past years due to population growth and industrialization. Industries use huge quantities of fresh water for their processes, and generate high quantities of wastewater rich in organic matter, nitrates, and phosphates. These effluents have contaminated the freshwater sources and there is a need to recycle this wastewater in an ecologically harmless manner. Microalgae use the nutrients in the wastewater as a medium for growth and the biomass produced are rich in nutrition that can cater growing food and energy needs. The primary and secondary metabolites of microalgae are utilized as biofuel and as active ingredients in cosmetics, animal feed, therapeutics, and pharmaceutical products. In this review, we explore food processing industries like dairy, meat, aquaculture, breweries, and their wastewater for the microalgal growth. Current treatment methods are expensive and energy demanding, which indirectly leads to higher greenhouse gas emissions. Microalgae acts as a potential biotreatment tool and mitigates carbon dioxide due to their high photosynthetic efficiency. This review aims to address the need to recycle wastewater generated from such industries and potentiality to use microalgae for biotreatment. This will help to build a circular bioeconomy by using wastewater as a valuable resource to produce valuable products.

2.
Chemosphere ; 266: 129204, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33310359

RESUMO

The inexorable industrialization and modern agricultural practices to meet the needs of the increasing population have polluted the environment with toxic heavy metals such as Cr(VI), Cu2+, Cd2+, Pb2+, and Zn2+. Among the hazardous heavy metal(loid)s contamination in agricultural soil, water, and air, hexavalent chromium [Cr(VI)] is the most virulent carcinogen. The metallurgic industries, tanneries, paint manufacturing, petroleum refineries are among various such human activities that discharge Cr(VI) into the environment. Various methods have been employed to reduce the concentration of Cr(VI) contamination with nano and bioremediation being the recent advancement to achieve recovery at low cost and higher efficiency. Bioremediation is the process of using biological sources such as plant extracts, microorganisms, and algae to reduce the heavy metals while the nano-remediation uses nanoparticles to adsorb heavy metals. In this review, we discuss the various activities that liberate Cr(VI). We then discuss the various conventional, nano-remediation, and bioremediation methods to keep Cr(VI) concentration in check and further discuss their efficiencies. We also discuss the mechanism of nano-remediation techniques for better insight into the process.


Assuntos
Cromo , Metais Pesados , Biodegradação Ambiental , Cromo/análise , Humanos , Metais Pesados/análise , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...