Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
CNS Neurol Disord Drug Targets ; 22(6): 801-816, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35546747

RESUMO

Parkinson's Disease (PD), known as Parkinsonism, is a neurodegenerative disease that mainly affects the elderly and is characterized by an extensive and progressive loss of dopaminergic neurons in the Substantia Nigra pars compacta (SNpc). Owing to genetic, environmental, and lifestyle changes, the incidence of PD has recently risen among adults. The most widely used PD treatment strategies include the use of dopamine agonists, anticholinergics, and enzyme inhibitors. The aquatic flora and fauna have become the emerging source of novel, structurally diverse bioactive compounds and, at present, the researchers concentrate their efforts on isolating, characterizing, and identifying many secondary metabolites of different nature to treat various disorders, including, neuroprotective marine natural products (MNPs). The bioactive peptides, tannins, carotenoids, alkaloids, polyunsaturated fatty acids (PUFA), and sulfated polysaccharides from the MNP's and their synthetic derivatives have demonstrated important neuroprotective activity in preclinical studies through multiple mechanisms. An extensive literature survey was carried out, and published articles from PubMed, Scifinder, Google Scholar, Web of Science, and Scopus were carefully reviewed to compile information on the MNPs to treat PD. This current review focus on neuroprotective MNPs and their probable biological pathways to treat PD based on their structure and bioactivities reported from 1990 to 2020.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Idoso , Doença de Parkinson/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Transtornos Parkinsonianos/tratamento farmacológico , Neurônios Dopaminérgicos/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia
2.
Nat Prod Res ; 35(3): 413-420, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31311318

RESUMO

Tadehagi triquetrum (L.) H.Ohashi, also known as Desmodium triquetrum (Fabaceae) is the most important plant in the herbal remedies. The present study focus on the isolation, in-silico and in-vitro studies of the two alkaloids C1 (5-(4-[(methylcarbamoyl) amino]-2-oxopyrimidin-1(2H)-yl) tetrahydrofuran-2-yl) methyl methyl carbamate is novel alkaloid and C2 13-Docosenamide is a known alkaloid. The chemical structures of compounds have been elucidated based on comprehensive techniques like GCMS, IR and NMR. In order to know the molecular mechanisms for the two compounds, in silico molecular docking study has been performed. Both compounds have shown perfect binding affinity to the enzymes TNF α, IL-4, IL-13 and 5 LOX Enzyme. The compounds also exhibited comparable G-scores and Glide energy values in comparison with the standard dexamethasone. In addition both the compounds have been tested for in vitro antioxidant assay by using ABTS and DPPH method and the results were compared with standard ascorbic acid.


Assuntos
Alcaloides/química , Alcaloides/metabolismo , Fabaceae/química , Alcaloides/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Simulação por Computador , Ácidos Erúcicos/química , Ácidos Erúcicos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Interleucina-13/química , Interleucina-13/metabolismo , Interleucina-4/química , Interleucina-4/metabolismo , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Estrutura Molecular , Extratos Vegetais/química , Raízes de Plantas/química , Pirimidinas/química , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...