Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37693437

RESUMO

Importance: Acute Hepatic Porphyria (AHP) is a group of rare but treatable conditions associated with diagnostic delays of fifteen years on average. The advent of electronic health records (EHR) data and machine learning (ML) may improve the timely recognition of rare diseases like AHP. However, prediction models can be difficult to train given the limited case numbers, unstructured EHR data, and selection biases intrinsic to healthcare delivery. Objective: To train and characterize models for identifying patients with AHP. Design Setting and Participants: This diagnostic study used structured and notes-based EHR data from two centers at the University of California, UCSF (2012-2022) and UCLA (2019-2022). The data were split into two cohorts (referral, diagnosis) and used to develop models that predict: 1) who will be referred for testing of acute porphyria, amongst those who presented with abdominal pain (a cardinal symptom of AHP), and 2) who will test positive, amongst those referred. The referral cohort consisted of 747 patients referred for testing and 99,849 contemporaneous patients who were not. The diagnosis cohort consisted of 72 confirmed AHP cases and 347 patients who tested negative. Cases were female predominant and 6-75 years old at the time of diagnosis. Candidate models used a range of architectures. Feature selection was semi-automated and incorporated publicly available data from knowledge graphs. Main Outcomes and Measures: F-score on an outcome-stratified test set. Results: The best center-specific referral models achieved an F-score of 86-91%. The best diagnosis model achieved an F-score of 92%. To further test our model, we contacted 372 current patients who lack an AHP diagnosis but were predicted by our models as potentially having it (≥ 10% probability of referral, ≥ 50% of testing positive). However, we were only able to recruit 10 of these patients for biochemical testing, all of whom were negative. Nonetheless, post hoc evaluations suggested that these models could identify 71% of cases earlier than their diagnosis date, saving 1.2 years. Conclusions and Relevance: ML can reduce diagnostic delays in AHP and other rare diseases. Robust recruitment strategies and multicenter coordination will be needed to validate these models before they can be deployed.

2.
J Antibiot (Tokyo) ; 74(6): 370-380, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33580212

RESUMO

The emergence of multi-drug resistant pathogenic bacteria represents a serious and growing threat to national healthcare systems. Most pressing is an immediate need for the development of novel antibacterial agents to treat Gram-negative multi-drug resistant infections, including the opportunistic, hospital-derived pathogen, Acinetobacter baumannii. Herein we report a naturally occurring 1,2-benzisoxazole with minimum inhibitory concentrations as low as 6.25 µg ml-1 against clinical strains of multi-drug resistant A. baumannii and investigate its possible mechanisms of action. This molecule represents a new chemotype for antibacterial agents against A. baumannii and is easily accessed in two steps via de novo synthesis. In vitro testing of structural analogs suggest that the natural compound may already be optimized for activity against this pathogen. Our results demonstrate that supplementation of 4-hydroxybenzoate in minimal media was able to reverse 1,2-benzisoxazole's antibacterial effects in A. baumannii. A search of metabolic pathways involving 4-hydroxybenzoate coupled with molecular modeling studies implicates two enzymes, chorismate pyruvate-lyase and 4-hydroxybenzoate octaprenyltransferase, as promising leads for the target of 3,6-dihydroxy-1,2-benzisoxazole.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bradyrhizobium/metabolismo , Antagonismo de Drogas , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxo-Ácido-Liases/antagonistas & inibidores , Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/metabolismo , Parabenos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos
3.
Sci Rep ; 9(1): 19590, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862919

RESUMO

Urinary tract infections (UTIs) caused by Escherichia coli create a large burden on healthcare and frequently lead to recurrent infections. Part of the success of E. coli as an uropathogenic bacterium can be attributed to its ability to form quiescent intracellular reservoirs in bladder cells and its persistence after antibiotic treatment. Cranberry juice and related products have been used for the prevention of UTIs with varying degrees of success. In this study, a group of cranberry pectic oligosaccharides (cPOS) were found to both inhibit quiescence and reduce the population of persister cells formed by the uropathogenic strain, CFT073. This is the first report detailing constituents of cranberry with the ability to modulate these important physiological aspects of uropathogenic E. coli. Further studies investigating cranberry should be keen to include oligosaccharides as part of the 'active' cocktail of chemical compounds.


Assuntos
Oligossacarídeos/química , Pectinas/química , Escherichia coli Uropatogênica/efeitos dos fármacos , Vaccinium macrocarpon/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Carboidratos/química , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Preparações de Plantas/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
4.
Mar Drugs ; 16(6)2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29875351

RESUMO

Marine actinobacteria continue to be a rich source for the discovery of structurally diverse secondary metabolites. Here we present a new hydroxymate siderophore produced by Amycolatopsis albispora, a recently described species of this less explored actinomycete genus. Strain WP1T was isolated from sediments collected at -2945 m in the Indian Ocean. The new siderophore, designated albisporachelin, was isolated from iron depleted culture broths and the structure was established by 1D and 2D NMR and MS/MS experiments, and application of a modified Marfey's method. Albisporachelin is composed of one N-methylated-formylated/hydroxylated l-ornithine (N-Me-fh-l-Orn), one l-serine (l-Ser), one formylated/hydroxylated l-ornithine (fh-l-Orn) and a cyclo-N-methylated-hydroxylated l-ornithine (cyclo-N-Me-h-l-Orn).


Assuntos
Actinomycetales/química , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Ácidos Hidroxâmicos/química , Lipídeos/química , Ornitina/análogos & derivados , Água do Mar/microbiologia , Sideróforos/química , Oceano Índico , Ferro/química , Ornitina/química
5.
mSphere ; 1(1)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303698

RESUMO

In the present study, it is shown that although Escherichia coli CFT073, a human uropathogenic (UPEC) strain, grows in liquid glucose M9 minimal medium, it fails to grow on glucose M9 minimal medium agar plates seeded with ≤10(6) CFU. The cells on glucose plates appear to be in a "quiescent" state that can be prevented by various combinations of lysine, methionine, and tyrosine. Moreover, the quiescent state is characteristic of ~80% of E. coli phylogenetic group B2 multilocus sequence type 73 strains, as well as 22.5% of randomly selected UPEC strains isolated from community-acquired urinary tract infections in Denmark. In addition, E. coli CFT073 quiescence is not limited to glucose but occurs on agar plates containing a number of other sugars and acetate as sole carbon sources. It is also shown that a number of E. coli CFT073 mini-Tn5 metabolic mutants (gnd, gdhA, pykF, sdhA, and zwf) are nonquiescent on glucose M9 minimal agar plates and that quiescence requires a complete oxidative tricarboxylic acid (TCA) cycle. In addition, evidence is presented that, although E. coli CFT073 quiescence and persistence in the presence of ampicillin are alike in that both require a complete oxidative TCA cycle and each can be prevented by amino acids, E. coli CFT073 quiescence occurs in the presence or absence of a functional rpoS gene, whereas maximal persistence requires a nonfunctional rpoS. Our results suggest that interventions targeting specific central metabolic pathways may mitigate UPEC infections by interfering with quiescence and persistence. IMPORTANCE Recurrent urinary tract infections (UTIs) affect 10 to 40% of women. In up to 77% of those cases, the recurrent infections are caused by the same uropathogenic E. coli (UPEC) strain that caused the initial infection. Upon infection of urothelial transitional cells in the bladder, UPEC appear to enter a nongrowing quiescent intracellular state that is thought to serve as a reservoir responsible for recurrent UTIs. Here, we report that many UPEC strains enter a quiescent state when ≤10(6) CFU are seeded on glucose M9 minimal medium agar plates and show that mutations in several genes involved in central carbon metabolism prevent quiescence, as well as persistence, possibly identifying metabolic pathways involved in UPEC quiescence and persistence in vivo.

6.
Org Lett ; 18(6): 1490-3, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26959412

RESUMO

Rhizoleucinoside (1), a unique rhamnolipid-amino alcohol hybrid, was isolated from the rhizobial symbiont bacterium Bradyrhizobium sp. BTAi1. Compound 1 features a rare rhamnolipid core attached to an unprecedented leucinol moiety. Its structure and absolute configuration were determined by spectroscopic analysis, tandem mass spectrometry, chemical degradation, and application of the Marfey's method. Compound 1 possesses moderate cytotoxicity to BV-2 murine microglia and highly aggressive proliferating immortalized (HAPI) rat microglia cells.


Assuntos
Bradyrhizobium/química , Citotoxinas/isolamento & purificação , Glicolipídeos/isolamento & purificação , Leucina/análogos & derivados , Leucina/isolamento & purificação , Animais , Citotoxinas/química , Citotoxinas/farmacologia , Glicolipídeos/química , Leucina/química , Camundongos , Microglia/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Ratos
7.
Front Microbiol ; 7: 59, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26870019

RESUMO

Interactions between phytoplankton and bacteria play a central role in mediating biogeochemical cycling and food web structure in the ocean. However, deciphering the chemical drivers of these interspecies interactions remains challenging. Here, we report the isolation of 2-heptyl-4-quinolone (HHQ), released by Pseudoalteromonas piscicida, a marine gamma-proteobacteria previously reported to induce phytoplankton mortality through a hitherto unknown algicidal mechanism. HHQ functions as both an antibiotic and a bacterial signaling molecule in cell-cell communication in clinical infection models. Co-culture of the bloom-forming coccolithophore, Emiliania huxleyi with both live P. piscicida and cell-free filtrates caused a significant decrease in algal growth. Investigations of the P. piscicida exometabolome revealed HHQ, at nanomolar concentrations, induced mortality in three strains of E. huxleyi. Mortality of E. huxleyi in response to HHQ occurred slowly, implying static growth rather than a singular loss event (e.g., rapid cell lysis). In contrast, the marine chlorophyte, Dunaliella tertiolecta and diatom, Phaeodactylum tricornutum were unaffected by HHQ exposures. These results suggest that HHQ mediates the type of inter-domain interactions that cause shifts in phytoplankton population dynamics. These chemically mediated interactions, and other like it, ultimately influence large-scale oceanographic processes.

8.
J Nat Prod ; 79(2): 447-50, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26824128

RESUMO

Thalassotalic acids A-C and thalassotalamides A and B are new N-acyl dehydrotyrosine derivatives produced by Thalassotalea sp. PP2-459, a Gram-negative bacterium isolated from a marine bivalve aquaculture facility. The structures were elucidated via a combination of spectroscopic analyses emphasizing two-dimensional NMR and high-resolution mass spectrometric data. Thalassotalic acid A (1) displays in vitro inhibition of the enzyme tyrosinase with an IC50 value (130 µM) that compares favorably to the commercially used control compounds kojic acid (46 µM) and arbutin (100 µM). These are the first natural products reported from a bacterium belonging to the genus Thalassotalea.


Assuntos
Monofenol Mono-Oxigenase/antagonistas & inibidores , Proteobactérias/química , Tirosina , Arbutina/farmacologia , Bactérias Gram-Negativas/química , Biologia Marinha , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Pironas/farmacologia , Espanha , Tirosina/análogos & derivados , Tirosina/química , Tirosina/isolamento & purificação , Tirosina/farmacologia
9.
J Nat Prod ; 78(3): 402-12, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25646964

RESUMO

Members of the resistance nodulation cell division (RND) of efflux pumps play essential roles in multidrug resistance (MDR) in Gram-negative bacteria. Here, we describe the search for new small molecules from marine microbial extracts to block efflux and thus restore antibiotic susceptibility in MDR bacterial strains. We report the isolation of 3,4-dibromopyrrole-2,5-dione (1), an inhibitor of RND transporters, from Enterobacteriaceae and Pseudomonas aeruginosa, from the marine bacterium Pseudoalteromonas piscicida. 3,4-Dibromopyrrole-2,5-dione decreased the minimum inhibitory concentrations (MICs) of two fluoroquinolones, an aminoglycoside, a macrolide, a beta-lactam, tetracycline, and chloramphenicol between 2- and 16-fold in strains overexpressing three archetype RND transporters (AcrAB-TolC, MexAB-OprM, and MexXY-OprM). 3,4-Dibromopyrrole-2,5-dione also increased the intracellular accumulation of Hoechst 33342 in wild-type but not in transporter-deficient strains and prevented H33342 efflux (IC50 = 0.79 µg/mL or 3 µM), a hallmark of efflux pump inhibitor (EPI) functionality. A metabolomic survey of 36 Pseudoalteromonas isolates mapped the presence of primarily brominated metabolites only within the P. piscicida phylogenetic clade, where a majority of antibiotic activity was also observed, suggesting a link between halogenation and enhanced secondary metabolite biosynthetic potential. In sum, 3,4-dibromopyrrole-2,5-dione is a potent EPI and deserves further attention as an adjuvant to enhance the effectiveness of existing antibiotics.


Assuntos
Antibacterianos/farmacologia , Pseudoalteromonas/química , Pirróis/farmacologia , Benzimidazóis/análise , Benzimidazóis/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Corantes Fluorescentes/análise , Corantes Fluorescentes/farmacologia , Bactérias Gram-Negativas/metabolismo , Proteínas de Membrana Transportadoras , Metabolômica , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Pseudomonas aeruginosa , Pirróis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...