Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1150156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090796

RESUMO

There is an urgent need for therapeutic approaches that can prevent or limit neuroinflammatory processes and prevent neuronal degeneration. Photobiomodulation (PBM), the therapeutic use of specific wavelengths of light, is a safe approach shown to have anti-inflammatory effects. The current study was aimed at evaluating the effects of PBM on LPS-induced peripheral and central inflammation in mice to assess its potential as an anti-inflammatory treatment. Daily, 30-min treatment of mice with red/NIR light (RL) or RL with a 40 Hz gamma frequency flicker for 10 days prior to LPS challenge showed anti-inflammatory effects in the brain and systemically. PBM downregulated LPS induction of key proinflammatory cytokines associated with inflammasome activation, IL-1ß and IL-18, and upregulated the anti-inflammatory cytokine, IL-10. RL provided robust anti-inflammatory effects, and the addition of gamma flicker potentiated these effects. Overall, these results demonstrate the potential of PBM as an anti-inflammatory treatment that acts through cytokine expression modulation.

2.
Front Pharmacol ; 13: 1030609, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532725

RESUMO

Locus coeruleus (LC) noradrenergic (NE) neurons supply the main adrenergic input to the forebrain. NE is a dual modulator of cognition and neuroinflammation. NE neurons of the LC are particularly vulnerable to degeneration both with normal aging and in neurodegenerative disorders. Consequences of this vulnerability can be observed in both cognitive impairment and dysregulation of neuroinflammation. LC NE neurons are pacemaker neurons that are active during waking and arousal and are responsive to stressors in the environment. Chronic overactivation is thought to be a major contributor to the vulnerability of these neurons. Here we review what is known about the mechanisms underlying this neuronal vulnerability and combinations of environmental and genetic factors that contribute to confer risk to these important brainstem neuromodulatory and immunomodulatory neurons. Finally, we discuss proposed and potential interventions that may reduce the overall risk for LC NE neuronal degeneration.

3.
Front Immunol ; 13: 880961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634307

RESUMO

COVID-19 is characterized by hyperactivation by inflammatory cytokines and recruitment of macrophages, neutrophils, and other immune cells, all hallmarks of a strong inflammatory response that can lead to severe complications and multi-organ damage. Mortality in COVID-19 patients is associated with a high prevalence of neutrophil extracellular trap (NET) formation and microthrombosis that are exacerbated by hyperglycemia, diabetes, and old age. SARS-CoV-2 infection in humans and non-human primates have revealed long-term neurological consequences of COVID-19, possibly concomitant with the formation of Lewy bodies in the brain and invasion of the nervous system via the olfactory bulb. In this paper, we review the relevance of the human cathelicidin LL-37 in SARS-CoV-2 infections. LL-37 is an immunomodulatory, host defense peptide with direct anti-SARS-CoV-2 activity, and pleiotropic effects on the inflammatory response, neovascularization, Lewy body formation, and pancreatic islet cell function. The bioactive form of vitamin D and a number of other compounds induce LL-37 expression and one might predict its upregulation, could reduce the prevalence of severe COVID-19. We hypothesize upregulation of LL-37 will act therapeutically, facilitating efficient NET clearance by macrophages, speeding endothelial repair after inflammatory tissue damage, preventing α-synuclein aggregation, and supporting blood-glucose level stabilization by facilitating insulin release and islet ß-cell neogenesis. In addition, it has been postulated that LL-37 can directly bind the S1 domain of SARS-CoV-2, mask angiotensin converting enzyme 2 (ACE2) receptors, and limit SARS-CoV-2 infection. Purposeful upregulation of LL-37 could also serve as a preventative and therapeutic strategy for SARS-CoV-2 infections.


Assuntos
COVID-19 , Animais , Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Humanos , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Catelicidinas
4.
ILAR J ; 62(1-2): 223-231, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34097730

RESUMO

The failure of animal studies to translate to effective clinical therapeutics has driven efforts to identify underlying cause and develop solutions that improve the reproducibility and translatability of preclinical research. Common issues revolve around study design, analysis, and reporting as well as standardization between preclinical and clinical endpoints. To address these needs, recent advancements in digital technology, including biomonitoring of digital biomarkers, development of software systems and database technologies, as well as application of artificial intelligence to preclinical datasets can be used to increase the translational relevance of preclinical animal research. In this review, we will describe how a number of innovative digital technologies are being applied to overcome recurring challenges in study design, execution, and data sharing as well as improving scientific outcome measures. Examples of how these technologies are applied to specific therapeutic areas are provided. Digital technologies can enhance the quality of preclinical research and encourage scientific collaboration, thus accelerating the development of novel therapeutics.


Assuntos
Inteligência Artificial , Tecnologia Digital , Animais , Monitoramento Biológico , Reprodutibilidade dos Testes , Tecnologia
5.
Lab Anim (NY) ; 49(8): 227-232, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32690932

RESUMO

Despite several therapeutics showing promise in nonclinical studies, survival from ovarian cancer remains poor. New technologies are urgently needed to optimize the translation of nonclinical studies into clinical successes. While most nonclinical settings utilize subjective measures of physiological parameters, which can hamper the accuracy of the results, this study assessed the physical activity of mice in real time using an objective, non-invasive, cloud-based, digital vivarium monitoring platform. An initial range-finding study in which varying numbers of ovarian cancer cells were inoculated in mice was conducted to characterize disease progression using digital metrics such as motion and breathing rate. Data from the range-finding study were used to establish a motion threshold (MT) that might predict terminal endpoint. Using the MT, the efficacies of cisplatin and OS2966, an anti-CD29 antibody, were assessed. Results showed that MT predicted terminal endpoint significantly earlier than traditional parameters and correlated with therapeutic efficacy. Thus, continuous motion monitoring sensitively predicts terminal endpoint in nonclinical ovarian cancer models and could be applicable for drug efficacy testing.


Assuntos
Benchmarking , Neoplasias Ovarianas , Animais , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Camundongos , Neoplasias Ovarianas/tratamento farmacológico
6.
Comp Med ; 70(4): 313-327, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32414427

RESUMO

A primary goal in preclinical animal research is respectful and responsible care aimed toward minimizing stress and discomfort while enhancing collection of accurate and reproducible scientific data. Researchers use hands-on clinical observations and measurements as part of routine husbandry procedures or study protocols to monitor animal welfare. Although frequent assessments ensure the timely identification of animals with declining health, increased handling can result in additional stress on the animal and increased study variability. We investigated whether automated alerting regarding changes in behavior and physiology can complement existing welfare assessments to improve the identification of animals in pain or distress. Using historical data collected from a diverse range of therapeutic models, we developed algorithms that detect changes in motion and breathing rate frequently associated with sick animals but rare in healthy controls. To avoid introducing selec- tion bias, we evaluated the performance of these algorithms by using retrospective analysis of all studies occurring over a 31-d period in our vivarium. Analyses revealed that the majority of the automated alerts occurred prior to or simultaneously with technicians' observations of declining health in animals. Additional analyses performed across the entire duration of 2 studies (animal models of rapid aging and lung metastasis) demonstrated the sensitivity, accuracy, and utility of automated alerting for detecting unhealthy subjects and those eligible for humane endpoints. The percentage of alerts per total subject days ranged between 0% and 24%, depending on the animal model. Automated alerting effectively complements standard clinical observations to enhance animal welfare and promote responsible scientific advancement.


Assuntos
Experimentação Animal/normas , Monitorização Fisiológica/métodos , Algoritmos , Experimentação Animal/ética , Bem-Estar do Animal/normas , Animais , Animais de Laboratório , Feminino , Masculino , Camundongos , Camundongos Endogâmicos , Estudos Retrospectivos
7.
Acta Neuropathol ; 137(6): 961-980, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30927072

RESUMO

Progressive aggregation of the protein alpha-synuclein (α-syn) and loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) are key histopathological hallmarks of Parkinson's disease (PD). Accruing evidence suggests that α-syn pathology can propagate through neuronal circuits in the brain, contributing to the progressive nature of the disease. Thus, it is therapeutically pertinent to identify modifiers of α-syn transmission and aggregation as potential targets to slow down disease progression. A growing number of genetic mutations and risk factors has been identified in studies of familial and sporadic forms of PD. However, how these genes affect α-syn aggregation and pathological transmission, and whether they can be targeted for therapeutic interventions, remains unclear. We performed a targeted genetic screen of risk genes associated with PD and parkinsonism for modifiers of α-syn aggregation, using an α-syn preformed-fibril (PFF) induction assay. We found that decreased expression of Lrrk2 and Gba modulated α-syn aggregation in mouse primary neurons. Conversely, α-syn aggregation increased in primary neurons from mice expressing the PD-linked LRRK2 G2019S mutation. In vivo, using LRRK2 G2019S transgenic mice, we observed acceleration of α-syn aggregation and degeneration of dopaminergic neurons in the SNpc, exacerbated degeneration-associated neuroinflammation and behavioral deficits. To validate our findings in a human context, we established a novel human α-syn transmission model using induced pluripotent stem cell (iPS)-derived neurons (iNs), where human α-syn PFFs triggered aggregation of endogenous α-syn in a time-dependent manner. In PD subject-derived iNs, the G2019S mutation enhanced α-syn aggregation, whereas loss of LRRK2 decreased aggregation. Collectively, these findings establish a strong interaction between the PD risk gene LRRK2 and α-syn transmission across mouse and human models. Since clinical trials of LRRK2 inhibitors in PD are currently underway, our findings raise the possibility that these may be effective in PD broadly, beyond cases caused by LRRK2 mutations.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Mutação de Sentido Incorreto , Neurônios/metabolismo , Doença de Parkinson/genética , Agregação Patológica de Proteínas/etiologia , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/citologia , Comportamento Exploratório , Glucosilceramidase/genética , Hipocampo/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/deficiência , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/patologia , Doença de Parkinson/patologia , Parte Compacta da Substância Negra/patologia , Cultura Primária de Células , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Interferência de RNA , Proteínas Recombinantes/metabolismo , Teste de Desempenho do Rota-Rod
8.
J Am Assoc Lab Anim Sci ; 58(2): 126-141, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30764898

RESUMO

Many variables can influence animal behavior and physiology, potentially affecting scientific study outcomes. Laboratory and husbandry procedures-including handling, cage cleaning, injections, blood collection, and animal identification-may produce a multitude of effects. Previous studies have examined the effects of such procedures by making behavioral and physiologic measurements at specific time points; this approach can be disruptive and limits the frequency or duration of observations. Because these procedures can have both acute and long-term effects, the behavior and physiology of animals should be monitored continuously. We performed a retrospective data analysis on the effects of 2 routine procedures, animal identification and cage changing, on motion and breathing rates of mice continuously monitored in the home cage. Animal identification, specifically tail tattooing and ear tagging, as well as cage changing, produced distinct and reproducible postprocedural changes in spontaneous motion and breathing rate patterns. Behavioral and physiologic changes lasted approximately 2 d after tattooing or ear tagging and 2 to 4 d for cage changing. Furthermore, cage changes showed strain-, sex-, and time-of-day-dependent responses but not age-dependent differences. Finally, by reviewing data from a rodent model of multiple sclerosis as a retrospective case study, we documented that cage changing inadvertently affected experimental outcomes. In summary, we demonstrate how retrospective analysis of data collected continuously can provide high-throughput, meaningful, and longitudinal insights in to how animals respond to routine procedures.


Assuntos
Criação de Animais Domésticos/métodos , Abrigo para Animais/normas , Sistemas de Identificação Animal , Animais , Automação , Comportamento Animal , Feminino , Ciência dos Animais de Laboratório , Masculino , Camundongos , Estudos Retrospectivos
9.
eNeuro ; 4(4)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28721361

RESUMO

Emerging evidence suggests that endoplasmic reticulum (ER) stress may be involved in the pathogenesis of Alzheimer's disease (AD). Recently, pharmacological modulation of the eukaryotic translation initiation factor-2 (eIF2α) pathway was achieved using an integrated stress response inhibitor (ISRIB). While members of this signaling cascade have been suggested as potential therapeutic targets for neurodegeneration, the biological significance of this pathway has not been comprehensively assessed in animal models of AD. The present study investigated the ER stress pathway and its long-term modulation utilizing in vitro and in vivo experimental models of tauopathy (MAPT P301S)PS19 and amyloidosis (APPSwe). We report that thapsigargin induces activating transcription factor-4 (ATF4) in primary cortical neurons (PCNs) derived from rat and APPSwe nontransgenic (nTg) and transgenic (Tg) mice. ISRIB mitigated the induction of ATF4 in PCNs generated from wild-type (WT) but not APPSwe mice despite partially restoring thapsigargin-induced translational repression in nTg PCNs. In vivo, C57BL/6J and PS19 mice received prolonged, once-daily administration of ISRIB. While the compound was well tolerated by PS19 and C57BL/6J mice, APPSwe mice treated per this schedule displayed significant mortality. Thus, the dose was reduced and administered only on behavioral test days. ISRIB did not improve learning and memory function in APPSwe Tg mice. While ISRIB did not reduce tau-related neuropathology in PS19 Tg mice, no evidence of ER stress-related dysfunction was observed in either of these Tg models. Taken together, the significance of ER stress and the relevance of these models to the etiology of AD require further investigation.


Assuntos
Doença de Alzheimer/metabolismo , Amiloidose/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Deficiências da Aprendizagem/metabolismo , Transtornos da Memória/metabolismo , Acetamidas/farmacocinética , Acetamidas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Amiloidose/tratamento farmacológico , Amiloidose/patologia , Amiloidose/psicologia , Animais , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Cicloexilaminas/farmacocinética , Cicloexilaminas/farmacologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Deficiências da Aprendizagem/tratamento farmacológico , Deficiências da Aprendizagem/etiologia , Deficiências da Aprendizagem/patologia , Masculino , Memória/efeitos dos fármacos , Memória/fisiologia , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/farmacologia , Ratos Sprague-Dawley , Tapsigargina
10.
Nat Med ; 21(10): 1154-62, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26390242

RESUMO

Tauopathies, including frontotemporal dementia (FTD) and Alzheimer's disease (AD), are neurodegenerative diseases in which tau fibrils accumulate. Recent evidence supports soluble tau species as the major toxic species. How soluble tau accumulates and causes neurodegeneration remains unclear. Here we identify tau acetylation at Lys174 (K174) as an early change in AD brains and a critical determinant in tau homeostasis and toxicity in mice. The acetyl-mimicking mutant K174Q slows tau turnover and induces cognitive deficits in vivo. Acetyltransferase p300-induced tau acetylation is inhibited by salsalate and salicylate, which enhance tau turnover and reduce tau levels. In the PS19 transgenic mouse model of FTD, administration of salsalate after disease onset inhibited p300 activity, lowered levels of total tau and tau acetylated at K174, rescued tau-induced memory deficits and prevented hippocampal atrophy. The tau-lowering and protective effects of salsalate were diminished in neurons expressing K174Q tau. Targeting tau acetylation could be a new therapeutic strategy against human tauopathies.


Assuntos
Transtornos Cognitivos/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia , Proteínas tau/fisiologia , Acetilação , Animais , Comportamento Animal , Humanos , Camundongos , Proteínas tau/metabolismo
11.
Physiol Behav ; 146: 98-104, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26066729

RESUMO

Rett syndrome is a Pervasive Developmental Disorder (PDD) associated with de novo mutations of the methyl CpG-binding protein 2 (MECP2) gene. Mecp2 functions as a transcription factor that regulates the expression of hundreds of genes. Identification of the role of Mecp2 in specific neurodevelopmental symptoms remains an important research aim. We previously demonstrated that male mice possessing a truncation mutation in Mecp2 are hyper-social. We predicted that reduced fear or anxiety might underlie this enhanced affiliation. In order to probe risk assessment and anxiety-like behavior, we compared Mecp2 truncation mutants to their wild-type littermates in the elevated plus maze and elevated zero maze. Additionally, subjects were administered the mouse defense test battery to evaluate unconditioned fear- and panic-like behavior to a graded set of threat scenarios and a predator stimulus. Mutant mice showed no significant changes in anxiety-like behavior. Yet, they displayed hyper-reactive escape and defensive behaviors to an animate predatory threat stimulus. Notably, mutant mice engaged in exaggerated active defense responding to threat stimuli at nearly all phases of the fear battery. These results reveal abnormalities in emotion regulation in Mecp2 mutants particularly in response to ecologically relevant threats. This hyper-responsivity suggests that transcriptional targets of Mecp2 are critical to emotion regulation. Moreover, we suggest that detailed analysis of defensive behavior and aggression with ethologically relevant tasks provides an avenue to interrogate gene-behavior mechanisms of neurodevelopmental and other psychiatric conditions.


Assuntos
Agressão/fisiologia , Ansiedade/etiologia , Mutação/genética , Síndrome de Rett/complicações , Síndrome de Rett/genética , Análise de Variância , Animais , Ansiedade/genética , Modelos Animais de Doenças , Reação de Fuga/fisiologia , Locomoção/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
12.
Behav Brain Res ; 251: 25-34, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22958973

RESUMO

Autism spectrum disorders (ASD) form a common group of neurodevelopmental disorders appearing to be under polygenic control, but also strongly influenced by multiple environmental factors. The brain mechanisms responsible for ASD are not understood and animal models paralleling related emotional and cognitive impairments may prove helpful in unraveling them. BTBR T+ tf/J (BTBR) mice display behaviors consistent with the three diagnostic categories for ASD. They show impaired social interaction and communication as well as increased repetitive behaviors. This review covers much of the data available to date on BTBR behavior, neuroanatomy and physiology in search for candidate biomarkers, which could both serve as diagnostic tools and help to design effective treatments for the behavioral symptoms of ASD.


Assuntos
Comunicação Animal , Comportamento Animal/fisiologia , Transtornos Globais do Desenvolvimento Infantil/fisiopatologia , Modelos Animais de Doenças , Comportamento Social , Animais , Biomarcadores , Criança , Transtornos Globais do Desenvolvimento Infantil/genética , Humanos , Camundongos , Camundongos Endogâmicos , Fenótipo
13.
Physiol Behav ; 107(5): 680-5, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22484562

RESUMO

Some animals display a variety of context dependent facial expressions. Previous studies have shown that rodents display a facial grimace while in pain. To determine if the facial expressions of mice extend beyond pain, facial expressions were analyzed in the presence of non-social, social and predator stimuli. In a vibrissae contact test, the whiskers of mice were stroked by the bristles of a brush. In a social proximity test, two mice were placed together in a small chamber where contact was virtually unavoidable. In a resident-intruder test of aggression, an unknown mouse was placed into the homecage of another mouse. In a cat odor exposure test and in a live rat exposure test, mice were presented with the respective stimuli. Results from this study indicated that mice showed two patterns of expression, either a full display of changes in the measured facial components, characterized by tightened eyes, flattened ears, nose swells and cheek swells; or a more limited display of these facial changes. The full display of changes occurred in the vibrissae contact test, the social proximity test, and in resident mice in the resident-intruder test. The more limited display of facial changes occurred in the cat odor exposure test, the rat exposure test and in intruder mice in the resident-intruder test. The differential display of facial changes across conditions indicated that mice showed tightened eyes and flattened ears in situations that provided the immediate potential for contact, suggesting that such changes are involved in protection of sensitive and/or vulnerable body parts. Furthermore, the display of facial expressions by mice indicates that these expressions are widely distributed across evolution.


Assuntos
Agressão/psicologia , Expressão Facial , Medo/psicologia , Agressão/fisiologia , Animais , Gatos , Medo/fisiologia , Masculino , Camundongos , Ratos , Comportamento Social
14.
Neurosci Biobehav Rev ; 36(1): 285-96, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21741402

RESUMO

BTBR T+tf/J (BTBR) mice have emerged as strong candidates to serve as models of a range of autism-relevant behaviors, showing deficiencies in social behaviors; reduced or unusual ultrasonic vocalizations in conspecific situations; and enhanced, repetitive self-grooming. Recent studies have described their behaviors in a seminatural visible burrow system (VBS); a Social Proximity Test in which avoidance of a conspecific is impossible; and in an object approach and investigation test evaluating attention to specific objects and potential stereotypies in the order of approaching/investigating objects. VBS results confirmed strong BTBR avoidance of conspecifics and in the Social Proximity Test, BTBR showed dramatic differences in several close-in behaviors, including specific avoidance of a nose-to-nose contact that may potentially be related to gaze-avoidance. Diazepam normalized social avoidance by BTBRs in a Three-Chamber Test, and some additional behaviors - but not nose to nose avoidance - in the Social Proximity Test. BTBR also showed higher levels of preference for particular objects, and higher levels of sequences investigating 3- or 4-objects in the same order. Heparan sulfate (HS) associated with fractal structures in the subventricular zone of the lateral ventricles was severely reduced in BTBR. HS may modulate the functions of a range of growth and guidance factors during development, and HS abnormalities are associated with relevant brain (callosal agenesis) and behavioral (reductions in sociality) changes; suggesting the value of examination of the dynamics of the HS system in the context of autism.


Assuntos
Transtorno Autístico/metabolismo , Transtorno Autístico/fisiopatologia , Heparitina Sulfato/metabolismo , Comportamento Social , Animais , Modelos Animais de Doenças , Comportamento Exploratório , Asseio Animal , Humanos , Masculino , Camundongos , Camundongos Endogâmicos
16.
Horm Behav ; 61(3): 436-44, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22100185

RESUMO

A wealth of studies has implicated oxytocin (Oxt) and its receptors (Oxtr) in the mediation of social behaviors and social memory in rodents. It has been suggested that failures in this system contribute to deficits in social interaction that characterize autism spectrum disorders (ASD). In the current analyses, we investigated the expression of autism-related behaviors in mice that lack the ability to synthesize the oxytocin receptor itself, Oxtr knockout (KO) mice, as compared to their wild-type (WT) littermates. In the visible burrow system, Oxtr KO mice showed robust reductions in frontal approach, huddling, allo-grooming, and flight, with more time spent alone, and in self-grooming, as compared to WT. These results were corroborated in the three-chambered test: unlike WT, Oxtr KO mice failed to spend more time in the side of the test box containing an unfamiliar CD-1 mouse. In the social proximity test, Oxtr KO mice showed clear reductions in nose to nose and anogenital sniff behaviors oriented to an unfamiliar C57BL/6J (B6) mouse. In addition, our study revealed no differences between Oxtr WT and KO genotypes in the occurrence of motor and cognitive stereotyped behaviors. A significant genotype effect was found in the scent marking analysis, with Oxtr KO mice showing a decreased number of scent marks, as compared to WT. Overall, the present data indicate that the profile for Oxtr KO mice, including consistent social deficits, and reduced levels of communication, models multiple components of the ASD phenotype. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/psicologia , Receptores de Ocitocina/genética , Receptores de Ocitocina/fisiologia , Análise de Variância , Comunicação Animal , Animais , Feminino , Genótipo , Asseio Animal , Individualidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Comportamento Social , Comportamento Estereotipado , Urina/fisiologia
17.
Behav Brain Res ; 216(1): 446-51, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20816701

RESUMO

BTBR T+ tf/J (BTBR) is an inbred mouse strain that shows behavioral traits with analogies to the three diagnostic symptoms of autism spectrum disorder (ASD); deficits in social interaction, impaired communication, and repetitive behaviors with restricted interests. Previous findings reveal that when compared to C57BL/6J (B6) and other inbred strains, BTBR exhibit normal to low anxiety-like traits in paradigms designed to assess anxiety-related behaviors. The current study assessed the generality of these anxiety findings. In experiment 1, B6 and BTBR mice were tested in the elevated plus maze (EPM), mouse defense test battery (MDTB) and elevated zero-maze. BTBR mice exhibited an anxiogenic profile in the EPM, with a reduction in open arm time and an increase in risk assessment behaviors, as compared to B6. In the MDTB, BTBR showed enhanced vocalization to the predator, and significantly less locomotor activity than B6 in the pre-threat situation, but significantly more locomotion than B6 following exposure to a predator threat, suggesting enhanced defensiveness to the predator. In the zero-maze, BTBR mice showed a significantly higher number of entries and time spent in the open segments of the apparatus, when compared to B6. In experiment 2, a three-chambered social preference test was used to evaluate effects of the systemic administration of an anxiolytic compound, diazepam, on B6 and BTBR social approach. Diazepam consistently increased time in the compartment containing the social stimulus, for both B6 and BTBR mice. However, in the vehicle treated groups, B6 mice spent significantly more time while BTBR mice spent significantly less time in the social stimulus compartment; after diazepam administration both B6 and BTBR strains significantly preferred the social stimulus chamber. These results suggest that while the anxiety responses of BTBR mice to novel situations (EPM and zero-maze) are inconsistent, BTBR mice appear to be more defensive to animate threat stimuli (predator or another mouse). Reduction of anxiety by diazepam normalized the social preference of BTBR for a mouse stimulus in the three-chambered test.


Assuntos
Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Comportamento Exploratório/fisiologia , Atividade Motora/fisiologia , Comportamento Social , Análise de Variância , Animais , Masculino , Camundongos , Camundongos Endogâmicos , Fenótipo , Especificidade da Espécie
18.
Behav Brain Res ; 217(2): 302-8, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21055421

RESUMO

The BTBR T+ tf/J (BTBR) inbred mouse strain displays a low sociability phenotype relevant to the first diagnostic symptom of autism, deficits in reciprocal social interactions. Previous studies have shown that BTBR mice exhibit reduced social approach, juvenile play, and interactive behaviors. The present study evaluated the behavior of the BTBR and C57BL/6J (B6) strains in social proximity. Subjects were closely confined and tested in four experimental conditions: same strain male pairs (Experiment 1); different strain male pairs (Experiment 2); same strain male pairs and female pairs (Experiment 3); same strain male pairs treated with an anxiolytic (Experiment 4). Results showed that BTBR mice displayed decreased nose tip-to-nose tip, nose-to-head and upright behaviors and increased nose-to-anogenital, crawl under and crawl over behaviors. These results demonstrated avoidance of reciprocal frontal orientations in the BTBR, providing a parallel to gaze aversion, a fundamental predictor of autism. For comparative purposes, Experiment 3 assessed male and female mice in a three-chamber social approach test and in the social proximity test. Results from the three-chamber test showed that male B6 and female BTBR displayed a preference for the sex and strain matched conspecific stimulus, while female B6 and male BTBR did not. Although there was no significant interaction between sex and strain in the social proximity test, a significant main effect of sex indicated that female mice displayed higher levels of nose tip-to-nose tip contacts and lower levels of anogenital investigation (nose-to-anogenital) in comparison to male mice, all together suggesting different motivations for sociability in males and females. Systemic administration of the anxiolytic, diazepam, decreased the frequency of two behaviors associated with anxiety and defensiveness, upright and jump escape, as well as crawl under behavior. This result suggests that crawl under behavior, observed at high levels in BTBR mice, is elicited by the aversiveness of social proximity, and possibly serves to avoid reciprocal frontal orientations with other mice.


Assuntos
Transtorno Autístico , Reação de Fuga/fisiologia , Comportamento Exploratório/fisiologia , Comportamento Social , Análise de Variância , Animais , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Transtorno Autístico/complicações , Transtorno Autístico/genética , Transtorno Autístico/psicologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Diazepam/uso terapêutico , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores Sexuais
19.
Neurosci Lett ; 485(3): 241-5, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-20849917

RESUMO

Intracerebroventricular (i.c.v.) or intraperitoneal (IP) administration of saredutant (SR48968), an NK2 receptor antagonist, produces anxiolytic-like effects in rodents in a number of animal models of anxiety. NK2 binding sites are present in several limbic structures in rats, including the hippocampus, thalamus, septum and prefrontal cortex, suggesting involvement in the modulation of emotional processes. The current study investigated the behavioral effects of saredutant infused into the ventral hippocampus (VH), a structure associated with cognitive and emotional processes, to clarify the neural substrate underlying the anxiolytic-like effect of the compound. Saredutant (10, 100 or 500 pmol/0.2 µL) was injected bilaterally into the VH of male CD-1 mice tested in the elevated plus-maze and mouse defense test battery (MDTB). Results from the EPM showed that microinjections of 10 pmol/0.2 µL of saredutant increased entries and time spent in the open arms and enhanced end-arm exploration. In the MDTB, saredutant (500 pmol/0.2 µL) decreased vocalizations and increased escape attempts in mice confronted with a rat. Taken together, these results suggest that hippocampal tachykinin mechanisms are involved in the modulation of anxiety and defensive behaviors.


Assuntos
Ansiolíticos/farmacologia , Ansiedade/psicologia , Benzamidas/farmacologia , Hipocampo/fisiologia , Piperidinas/farmacologia , Receptores da Neurocinina-2/antagonistas & inibidores , Animais , Ansiolíticos/administração & dosagem , Aprendizagem da Esquiva/efeitos dos fármacos , Benzamidas/administração & dosagem , Gatos , Reação de Fuga/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Hipocampo/anatomia & histologia , Masculino , Camundongos , Microinjeções , Odorantes , Piperidinas/administração & dosagem , Ratos , Ratos Long-Evans , Técnicas Estereotáxicas
20.
Behav Brain Res ; 214(2): 443-9, 2010 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-20600340

RESUMO

The core symptoms of autism spectrum disorder (ASD) include deficits in social interaction, impaired communication, and repetitive behaviors with restricted interests. Mouse models with behavioral phenotypes relevant to these core symptoms offer an experimental approach to advance the investigation of genes associated with ASD. Previous findings demonstrate that BTBR T+ tf/J (BTBR) is an inbred mouse strain that shows robust behavioral phenotypes with analogies to all three of the diagnostic symptoms of ASD. In the present study, we investigated the expression of social behaviors in a semi-natural visible burrow system (VBS), during colony formation and maintenance in groups comprising three adult male mice of the same strain, either C57BL/6J (B6) or BTBR. For comparative purposes, an extensively investigated three-chambered test was subsequently used to assess social approach in both strains. The effects of strain on these two situations were consistent and highly significant. In the VBS, BTBR mice showed reductions in all interactive behaviors: approach (front and back), flight, chase/follow, allo-grooming and huddling, along with increases in self-grooming and alone, as compared to B6. These results were corroborated in the three-chambered test: in contrast to B6, male BTBR mice failed to spend more time in the side of the test box containing the unfamiliar CD-1 mouse. Overall, the present data indicates that the strain profile for BTBR mice, including consistent social deficits and high levels of repetitive self-grooming, models multiple components of the ASD phenotype.


Assuntos
Camundongos Endogâmicos , Fenótipo , Comportamento Social , Meio Social , Animais , Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...