Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4207, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760370

RESUMO

The concept of universality has shaped our understanding of many-body physics, but is mostly limited to homogenous systems. Here, we present a study of universality on a non-homogeneous graph, the long-range diluted graph (LRDG). Its scaling theory is controlled by a single parameter, the spectral dimension ds, which plays the role of the relevant parameter on complex geometries. The graph under consideration allows us to tune the value of the spectral dimension continuously also to noninteger values and to find the universal exponents as continuous functions of the dimension. By means of extensive numerical simulations, we probe the scaling exponents of a simple instance of O ( N ) symmetric models on the LRDG showing quantitative agreement with the theoretical prediction of universal scaling in real dimensions.

2.
Phys Rev Lett ; 131(15): 156501, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37897761

RESUMO

Non-Hermiticity in quantum Hamiltonians leads to nonunitary time evolution and possibly complex energy eigenvalues, which can lead to a rich phenomenology with no Hermitian counterpart. In this work, we study the dynamics of an exactly solvable non-Hermitian system, hosting both PT-symmetric and PT-broken modes subject to a linear quench. Employing a fully consistent framework, in which the Hilbert space is endowed with a nontrivial dynamical metric, we analyze the dynamics of the generated defects. In contrast to Hermitian systems, our study reveals that PT-broken time evolution leads to defect freezing and hence the violation of adiabaticity. This physics necessitates the so-called metric framework, as it is missed by the oft used approach of normalizing quantities by the time-dependent norm of the state. Our results are relevant for a wide class of experimental systems.

3.
Sci Rep ; 13(1): 12388, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524738

RESUMO

The prominent collective character of long-range interacting quantum systems makes them promising candidates for quantum technological applications. Yet, lack of additivity overthrows the traditional picture for entanglement scaling and transport, due to the breakdown of the common mechanism based on excitations propagation and confinement. Here, we describe the dynamics of the entanglement entropy in many-body quantum systems with a diverging contribution to the internal energy from the long-range two body potential. While in the strict thermodynamic limit entanglement dynamics is shown to be suppressed, a rich mosaic of novel scaling regimes is observed at intermediate system sizes, due to the possibility to trigger multiple resonant modes in the global dynamics. Quantitative predictions on the shape and timescales of entanglement propagation are made, paving the way to the observation of these phases in current quantum simulators. This picture is connected and contrasted with the case of local many body systems subject to Floquet driving.

5.
Phys Rev E ; 104(5-1): 054302, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942729

RESUMO

From social interactions to the human brain, higher-order networks are key to describe the underlying network geometry and topology of many complex systems. While it is well known that network structure strongly affects its function, the role that network topology and geometry has on the emerging dynamical properties of higher-order networks is yet to be clarified. In this perspective, the spectral dimension plays a key role since it determines the effective dimension for diffusion processes on a network. Despite its relevance, a theoretical understanding of which mechanisms lead to a finite spectral dimension, and how this can be controlled, still represents a challenge and is the object of intense research. Here, we introduce two nonequilibrium models of hyperbolic higher-order networks and we characterize their network topology and geometry by investigating the intertwined appearance of small-world behavior, δ-hyperbolicity, and community structure. We show that different topological moves, determining the nonequilibrium growth of the higher-order hyperbolic network models, induce tuneable values of the spectral dimension, showing a rich phenomenology which is not displayed in random graph ensembles. In particular, we observe that, if the topological moves used to construct the higher-order network increase the area/volume ratio, then the spectral dimension continuously decreases, while the opposite effect is observed if the topological moves decrease the area/volume ratio. Our work reveals a new link between the geometry of a network and its diffusion properties, contributing to a better understanding of the complex interplay between network structure and dynamics.

6.
Phys Rev Lett ; 127(15): 156801, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34678026

RESUMO

The Berezinskii-Kosterlitz-Thouless (BKT) transition is the paradigmatic example of a topological phase transition without symmetry breaking, where a quasiordered phase, characterized by a power-law scaling of the correlation functions at low temperature, is disrupted by the proliferation of topological excitations above the critical temperature T_{BKT}. In this Letter, we consider the effect of long-range decaying couplings ∼r^{-2-σ} on the BKT transition. After pointing out the relevance of this nontrivial problem, we discuss the phase diagram, which is far richer than the corresponding short-range one. It features-for 7/4<σ<2-a quasiordered phase in a finite temperature range T_{c}T_{BKT}. The transition temperature T_{c} displays unique universal features quite different from those of the traditional, short-range XY model. Given the universal nature of our findings, they may be observed in current experimental realizations in 2D atomic, molecular, and optical quantum systems.

7.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301897

RESUMO

Long-lived quasi-stationary states (QSSs) are a signature characteristic of long-range interacting systems both in the classical and in the quantum realms. Often, they emerge after a sudden quench of the Hamiltonian internal parameters and present a macroscopic lifetime, which increases with the system size. Despite their ubiquity, the fundamental mechanism at their root remains unknown. Here, we show that the spectrum of systems with power-law decaying couplings remains discrete up to the thermodynamic limit. As a consequence, several traditional results on the chaotic nature of the spectrum in many-body quantum systems are not satisfied in the presence of long-range interactions. In particular, the existence of QSSs may be traced back to the finiteness of Poincaré recurrence times. This picture justifies and extends known results on the anomalous magnetization dynamics in the quantum Ising model with power-law decaying couplings. The comparison between the discrete spectrum of long-range systems and more conventional examples of pure point spectra in the disordered case is also discussed.

8.
Phys Rev Lett ; 123(10): 100601, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31573277

RESUMO

We study the effect of a linear tunneling coupling between two-dimensional systems, each separately exhibiting the topological Berezinskii-Kosterlitz-Thouless (BKT) transition. In the uncoupled limit, there are two phases: one where the one-body correlation functions are algebraically decaying and the other with exponential decay. When the linear coupling is turned on, a third BKT-paired phase emerges, in which one-body correlations are exponentially decaying, while two-body correlation functions exhibit power-law decay. We perform numerical simulations in the paradigmatic case of two coupled XY models at finite temperature, finding evidences that for any finite value of the interlayer coupling, the BKT-paired phase is present. We provide a picture of the phase diagram using a renormalization group approach.

9.
Science ; 365(6450): 268-272, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31320537

RESUMO

Quantum anomalies are violations of classical scaling symmetries caused by divergences that appear in the quantization of certain classical theories. Although they play a prominent role in the quantum field theoretical description of many-body systems, their influence on experimental observables is difficult to discern. In this study, we discovered a distinctive manifestation of a quantum anomaly in the momentum-space dynamics of a two-dimensional (2D) Fermi superfluid of ultracold atoms. The measured pair momentum distributions of the superfluid during a breathing mode cycle exhibit a scaling violation in the strongly interacting regime. We found that the power-law exponents that characterize long-range phase correlations in the system are modified by the quantum anomaly, emphasizing the influence of this effect on the critical properties of 2D superfluids.

10.
Phys Rev Lett ; 122(14): 143602, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31050463

RESUMO

Many-body interference between indistinguishable particles can give rise to strong correlations rooted in quantum statistics. We study such Hanbury Brown-Twiss-type correlations for number states of ultracold massive fermions. Using deterministically prepared ^{6}Li atoms in optical tweezers, we measure momentum correlations using a single-atom sensitive time-of-flight imaging scheme. The experiment combines on-demand state preparation of highly indistinguishable particles with high-fidelity detection, giving access to two- and three-body correlations in fields of fixed fermionic particle number. We find that pairs of atoms interfere with a contrast close to 80%. We show that second-order density correlations arise from contributions from all two-particle pairs and detect intrinsic third-order correlations.

11.
Phys Rev Lett ; 121(24): 240403, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30608754

RESUMO

Slow quenches of the magnetic field across the paramagnetic-ferromagnetic phase transition of spin systems produce heat. In systems with short-range interactions the heat exhibits universal power-law scaling as a function of the quench rate, known as Kibble-Zurek scaling. In this work we analyze slow quenches of the magnetic field in the Lipkin-Meshkov-Glick (LMG) model, which describes fully connected quantum spins. We analytically determine the quantum contribution to the residual heat as a function of the quench rate δ by means of a Holstein-Primakoff expansion about the mean-field value. Unlike in the case of short-range interactions, scaling laws in the LMG model are only found for a ramp starting or ending at the critical point. If instead the ramp is symmetric, as in the typical Kibble-Zurek scenario, then the number of excitations exhibits a crossover behavior as a function of δ and tends to a constant in the thermodynamic limit. Previous, and seemingly contradictory, theoretical studies are identified as specific limits of this dynamics. Our results can be tested on several experimental platforms, including quantum gases and trapped ions.

12.
Artigo em Inglês | MEDLINE | ID: mdl-26651653

RESUMO

We study, by renormalization group methods, O(N) models with interactions decaying as power law with exponent d+σ. When only the long-range momentum term p(σ) is considered in the propagator, the critical exponents can be computed from those of the corresponding short-range O(N) models at an effective fractional dimension D(eff). Neglecting wave function renormalization effects the result for the effective dimension is D(eff)=2d/σ, which turns to be exact in the spherical model limit (N→∞). Introducing a running wave function renormalization term the effective dimension becomes instead D(eff)=(2-η(SR))d/σ. The latter result coincides with the one found using standard scaling arguments. Explicit results in two and three dimensions are given for the exponent ν. We propose an improved method to describe the full theory space of the models where both short- and long-range propagator terms are present and no a priori choice among the two in the renormalization group flow is done. The eigenvalue spectrum of the full theory for all possible fixed points is drawn and a full description of the fixed-point structure is given, including multicritical long-range universality classes. The effective dimension is shown to be only approximate, and the resulting error is estimated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...