Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 194(4): 1001-1013, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22463738

RESUMO

Parasitism and saprotrophic wood decay are two fungal strategies fundamental for succession and nutrient cycling in forest ecosystems. An opportunity to assess the trade-off between these strategies is provided by the forest pathogen and wood decayer Heterobasidion annosum sensu lato. We report the annotated genome sequence and transcript profiling, as well as the quantitative trait loci mapping, of one member of the species complex: H. irregulare. Quantitative trait loci critical for pathogenicity, and rich in transposable elements, orphan and secreted genes, were identified. A wide range of cellulose-degrading enzymes are expressed during wood decay. By contrast, pathogenic interaction between H. irregulare and pine engages fewer carbohydrate-active enzymes, but involves an increase in pectinolytic enzymes, transcription modules for oxidative stress and secondary metabolite production. Our results show a trade-off in terms of constrained carbohydrate decomposition and membrane transport capacity during interaction with living hosts. Our findings establish that saprotrophic wood decay and necrotrophic parasitism involve two distinct, yet overlapping, processes.


Assuntos
Basidiomycota/genética , Genoma Fúngico , Interações Hospedeiro-Patógeno , Árvores/microbiologia , Madeira/microbiologia , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Locos de Características Quantitativas
2.
Anal Bioanal Chem ; 402(10): 3333-44, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22227827

RESUMO

Metabolite fingerprinting of Sitka spruce (Picea sitchensis) bark and sapwood was carried out by (1)H nuclear magnetic resonance after wounding and artificial inoculation with the white rot fungus Heterobasidion annosum sensu stricto. The aim was to determine whether metabolites would differ in clones showing differing levels of susceptibility to H. annosum, in the fungal as compared with the control treatment (wounding, no fungus) and the reference (healthy sample collected at 0 days), at two different locations on the host, and at different sampling times (3 and 43 days after treatment). The results suggested that different metabolic processes occur in bark and sapwood after wounding and fungal inoculation, compared with healthy samples collected before treatment: In bark, greater peaks were elicited in the aromatic region whereas, in sapwood, lower amounts of all metabolites were observed in inoculated samples, compared with healthy samples. Multivariate statistical analysis carried out with analysis of variance-principal component analysis showed highly significant effects of reference, location, and time (PC1), and significant effects of clone and fungus. Differences between clones were apparent in sapwood but not in bark and were due to peaks in the aliphatic and carbohydrate regions. Over time, in bark, there was a decrease in carbohydrate peaks, followed by an increase in aliphatic and aromatic peaks. Sapwood, by contrast, showed a decrease in all peaks, followed by an increase in carbohydrate and aliphatic peaks. Changes in carbohydrate levels were observed within the lesion compared with the more distal location in both bark and sapwood.


Assuntos
Basidiomycota/fisiologia , Picea/química , Picea/metabolismo , Casca de Planta/química , Doenças das Plantas/microbiologia , Espectroscopia de Ressonância Magnética/métodos , Picea/microbiologia , Casca de Planta/metabolismo , Casca de Planta/microbiologia
3.
Anal Bioanal Chem ; 402(10): 3323-31, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22246047

RESUMO

Element distribution in the bark of two 20-year-old clones of Picea sitchensis following wounding was studied using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Bark was sampled at 0, 3, and 43 days after wounding and analysed using a focused Nd:YAG laser (266 nm). Intensities of (13)C, (25)Mg, (27)Al, (31)P, (32)S, (39)K, (48)Ca, (55)Mn, (57)Fe, (63)Cu and (64)Zn were measured by ICP-MS to study elemental distribution across the bark samples during the wound repair process. A clear accumulation of Mg, P and K at the boundary zone between the lesion and healthy tissue was detected in the wounded samples and was more distinctive at 43 than at 3 days after treatment. This zone of accumulation mapped onto the position of formation of the ligno-suberised boundary zone and differentiation of the wound periderm. These accumulations suggest major roles for Mg, P and K in the non-specific response of Sitka spruce both to wounding, possibly as co-factors to enzymes and energy utilisation. The LA-ICP-MS method developed in this work proved useful to study spatial element distribution across bark samples and has great potential for applications in other areas of plant pathology research.


Assuntos
Espectrometria de Massas/métodos , Picea/química , Casca de Planta/química , Patologia Vegetal/instrumentação , Oligoelementos/análise , Espectrometria de Massas/instrumentação , Picea/fisiologia , Casca de Planta/fisiologia , Oligoelementos/metabolismo , Árvores/química , Árvores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...