Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Evid ; 13(1): 6, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-39294685

RESUMO

BACKGROUND: Northern ecosystems are strongly influenced by herbivores that differ in their impacts on the ecosystem. Yet the role of herbivore diversity in shaping the structure and functioning of tundra ecosystems has been overlooked. With climate and land-use changes causing rapid shifts in Arctic species assemblages, a better understanding of the consequences of herbivore diversity changes for tundra ecosystem functioning is urgently needed. This systematic review synthesizes available evidence on the effects of herbivore diversity on different processes, functions, and properties of tundra ecosystems. METHODS: Following a published protocol, our systematic review combined primary field studies retrieved from bibliographic databases, search engines and specialist websites that compared tundra ecosystem responses to different levels of vertebrate and invertebrate herbivore diversity. We used the number of functional groups of herbivores (i.e., functional group richness) as a measure of the diversity of the herbivore assemblage. We screened titles, abstracts, and full texts of studies using pre-defined eligibility criteria. We critically appraised the validity of the studies, tested the influence of different moderators, and conducted sensitivity analyses. Quantitative synthesis (i.e., calculation of effect sizes) was performed for ecosystem responses reported by at least five articles and meta-regressions including the effects of potential modifiers for those reported by at least 10 articles. REVIEW FINDINGS: The literature searches retrieved 5944 articles. After screening titles, abstracts, and full texts, 201 articles including 3713 studies (i.e., individual comparisons) were deemed relevant for the systematic review, with 2844 of these studies included in quantitative syntheses. The available evidence base on the effects of herbivore diversity on tundra ecosystems is concentrated around well-established research locations and focuses mainly on the impacts of vertebrate herbivores on vegetation. Overall, greater herbivore diversity led to increased abundance of feeding marks by herbivores and soil temperature, and to reduced total abundance of plants, graminoids, forbs, and litter, plant leaf size, plant height, and moss depth, but the effects of herbivore diversity were difficult to tease apart from those of excluding vertebrate herbivores. The effects of different functional groups of herbivores on graminoid and lichen abundance compensated each other, leading to no net effects when herbivore effects were combined. In turn, smaller herbivores and large-bodied herbivores only reduced plant height when occurring together but not when occurring separately. Greater herbivore diversity increased plant diversity in graminoid tundra but not in other habitat types. CONCLUSIONS: This systematic review underscores the importance of herbivore diversity in shaping the structure and function of Arctic ecosystems, with different functional groups of herbivores exerting additive or compensatory effects that can be modulated by environmental conditions. Still, many challenges remain to fully understand the complex impacts of herbivore diversity on tundra ecosystems. Future studies should explicitly address the role of herbivore diversity beyond presence-absence, targeting a broader range of ecosystem responses and explicitly including invertebrate herbivores. A better understanding of the role of herbivore diversity will enhance our ability to predict whether and where shifts in herbivore assemblages might mitigate or further amplify the impacts of environmental change on Arctic ecosystems.

2.
J Therm Biol ; 123: 103910, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981304

RESUMO

Sub-lethal effects of warming temperatures are an important, yet sometimes overlooked impact of climate change that may threaten the long-term survival of numerous species. This, like many other effects of climate change, is especially concerning for cold-adapted ectotherms living in rapidly warming polar regions. This study examines the effects of warmer temperatures on cold-adapted Diptera, using the long-lived sub-Antarctic sphaerocerid fly, Anatalanta aptera, as a focal species. We conducted two experiments to assess heat stress in adult flies, one varying the intensity of the heat stress (daily heating from 4 °C to 8 °C, 20 °C, or 24 °C) and one varying the frequency of heat stress exposure (heating from 4 °C to 12 °C every one, two, or three days) and examined consequences for reproductive success and metabolic responses. We found that more heat stress reduced reproductive output, but not timing of reproduction. Surprisingly, individuals sampled at different times during heat stress exposure were undifferentiable when all metabolite concentrations were analysed with redundancy analysis, however some individual metabolites did exhibit significant differences. Overall, our findings suggest that warmer temperatures in the sub-Antarctic may put this species at greater risk, especially when combined with other concurrent threats from biological invasions.


Assuntos
Dípteros , Resposta ao Choque Térmico , Reprodução , Animais , Dípteros/fisiologia , Feminino , Masculino , Temperatura Alta/efeitos adversos , Mudança Climática
3.
Ambio ; 53(8): 1124-1135, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38402492

RESUMO

Changes in wild and domestic herbivore populations significantly impact extensive grazing systems, particularly in low productive environments, where increasing wild herbivore populations are perceived as a threat to farming. To assess the magnitude of these changes in Iceland, we compiled time series on herbivore populations from 1986 to 2020 and estimated changes in species densities, metabolic biomass, and consumption of plant biomass in improved lands and unimproved rangelands. We compared estimates of consumption rates to past and present net primary production. Overall, the herbivore community composition shifted from livestock to wildlife dominated. However, wild herbivores only contributed a small fraction (14%) of the total herbivore metabolic biomass and consumption (4-7%), and livestock dominated the overall herbivore biomass. These insights highlight the necessity of developing improved local integrated management for both wild and domestic herbivores where they coexist.


Assuntos
Animais Selvagens , Herbivoria , Gado , Animais , Islândia , Biomassa , Plantas
4.
Sci Total Environ ; 845: 157140, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35803416

RESUMO

Rangeland ecosystems are changing worldwide with the abandonment of extensive pastoralism practices and greater interest for species coexistence. However, the lack of compiled data on current changes in the abundance and distribution of herbivores challenges rangeland management decisions. Here we gathered and made available for the first time the most extensive set of occurrence data for rangeland herbivores in Iceland in an Open Access framework for transparent and repeatable science-based decisions. We mapped fine scale species distribution overlap to identify areas at risk for wildlife-livestock conflict and overgrazing. Nationwide and long term (1861-2021) occurrence data from 8 independent datasets were used alongside 11 predictor raster layers ("Big Data") to data mine and map the distribution of the domestic sheep (Ovis aries), feral reindeer (Rangifer tarandus tarandus), pink-footed geese (Anser brachyrhynchus), and rock ptarmigan (Lagopus muta islandorum) over the country during the summer. Using algorithms of Maxent in R, RandomForest, TreeNet (stochastic gradient boosting) and MARS (Splines) in Minitab-SPM 8.3, we computed 1 km pixel predictions from machine learning-based ensemble models. Our high-resolution models were tested with alternative datasets, and Area Under the Curve (AUC) values that indicated good (reindeer: 0.8817 and rock ptarmigan: 0.8844) to high model accuracy (sheep: 0.9708 and pink-footed goose: 0.9143). Whenever possible, source data and models are made available online and described with ISO-compliant metadata. Our results illustrate that sheep and pink-footed geese have the greatest overlap in distribution with potential implication for wildlife-livestock conflicts and continued ecosystem degradation even under diminishing livestock abundance at higher elevation. These nationwide models and data are a global asset and a first step in making available the best data for science-based sustainable decision-making about national herbivores affecting species coexistence and environmental management.


Assuntos
Ecossistema , Rena , Animais , Gansos , Herbivoria , Islândia , Gado , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA