Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 170(1): 338-53, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26574596

RESUMO

The critical role of veins in transporting water, nutrients, and signals suggests that some key regulators of vein formation may be genetically redundant and, thus, undetectable by forward genetic screens. To identify such regulators, we screened more than 5000 structurally diverse small molecules for compounds that alter Arabidopsis (Arabidopsis thaliana) leaf vein patterns. Many compound-induced phenotypes were observed, including vein networks with an open reticulum; decreased or increased vein number and thickness; and misaligned, misshapen, or nonpolar vascular cells. Further characterization of several individual active compounds suggests that their targets include hormone cross talk, hormone-dependent transcription, and PIN-FORMED trafficking.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Folhas de Planta/anatomia & histologia , Bibliotecas de Moléculas Pequenas/farmacologia , Actinas/metabolismo , Arabidopsis/anatomia & histologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Folhas de Planta/efeitos dos fármacos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Bibliotecas de Moléculas Pequenas/química
2.
Phytochemistry ; 117: 220-236, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26093490

RESUMO

Small molecules (xenobiotics) that inhibit cell-wall-localised enzymes are valuable for elucidating the enzymes' biological roles. We applied a high-throughput fluorescent dot-blot screen to search for inhibitors of Petroselinum xyloglucan endotransglucosylase (XET) activity in vitro. Of 4216 xenobiotics tested, with cellulose-bound xyloglucan as donor-substrate, 18 inhibited XET activity and 18 promoted it (especially anthraquinones and flavonoids). No compounds promoted XET in quantitative assays with (cellulose-free) soluble xyloglucan as substrate, suggesting that promotion was dependent on enzyme-cellulose interactions. With cellulose-free xyloglucan as substrate, we found 22 XET-inhibitors - especially compounds that generate singlet oxygen ((1)O2) e.g., riboflavin (IC50 29 µM), retinoic acid, eosin (IC50 27 µM) and erythrosin (IC50 36 µM). The riboflavin effect was light-dependent, supporting (1)O2 involvement. Other inhibitors included tannins, sulphydryl reagents and triphenylmethanes. Some inhibitors (vulpinic acid and brilliant blue G) were relatively specific to XET, affecting only two or three, respectively, of nine other wall-enzyme activities tested; others [e.g. (-)-epigallocatechin gallate and riboflavin] were non-specific. In vivo, out of eight XET-inhibitors bioassayed, erythrosin (1 µM) inhibited cell expansion in Rosa and Zea cell-suspension cultures, and 40 µM mycophenolic acid and (-)-epigallocatechin gallate inhibited Zea culture growth. Our work showcases a general high-throughput strategy for discovering wall-enzyme inhibitors, some being plant growth inhibitors potentially valuable as physiological tools or herbicide leads.


Assuntos
Inibidores Enzimáticos/farmacologia , Glicosiltransferases/antagonistas & inibidores , Ensaios de Triagem em Larga Escala/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Técnicas de Cultura de Células/métodos , Parede Celular/enzimologia , Inibidores Enzimáticos/química , Glucanos/metabolismo , Concentração Inibidora 50 , Luz , Petroselinum/enzimologia , Riboflavina/farmacologia , Rosa/citologia , Rosa/efeitos dos fármacos , Rosa/enzimologia , Bibliotecas de Moléculas Pequenas/química , Taninos/química , Taninos/farmacologia , Xenobióticos/química , Xenobióticos/farmacologia , Xilanos/metabolismo , Zea mays/citologia , Zea mays/efeitos dos fármacos , Zea mays/enzimologia
3.
Proc Natl Acad Sci U S A ; 110(29): 12132-7, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818638

RESUMO

Abscisic acid (ABA) is an essential molecule in plant abiotic stress responses. It binds to soluble pyrabactin resistance1/PYR1-like/regulatory component of ABA receptor receptors and stabilizes them in a conformation that inhibits clade A type II C protein phosphatases; this leads to downstream SnRK2 kinase activation and numerous cellular outputs. We previously described the synthetic naphthalene sulfonamide ABA agonist pyrabactin, which activates seed ABA responses but fails to trigger substantial responses in vegetative tissues in Arabidopsis thaliana. Here we describe quinabactin, a sulfonamide ABA agonist that preferentially activates dimeric ABA receptors and possesses ABA-like potency in vivo. In Arabidopsis, the transcriptional responses induced by quinabactin are highly correlated with those induced by ABA treatments. Quinabactin treatments elicit guard cell closure, suppress water loss, and promote drought tolerance in adult Arabidopsis and soybean plants. The effects of quinabactin are sufficiently similar to those of ABA that it is able to rescue multiple phenotypes observed in the ABA-deficient mutant aba2. Genetic analyses show that quinabactin's effects in vegetative tissues are primarily mediated by dimeric ABA receptors. A PYL2-quinabactin-HAB1 X-ray crystal structure solved at 1.98-Å resolution shows that quinabactin forms a hydrogen bond with the receptor/PP2C "lock" hydrogen bond network, a structural feature absent in pyrabactin-receptor/PP2C complexes. Our results demonstrate that ABA receptors can be chemically controlled to enable plant protection against water stress and define the dimeric receptors as key targets for chemical modulation of vegetative ABA responses.


Assuntos
Aclimatação/fisiologia , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Modelos Moleculares , Folhas de Planta/citologia , Ácido Abscísico/agonistas , Aclimatação/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Cristalografia por Raios X , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Estrutura Molecular , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Quinolonas/farmacologia , Sulfonamidas/farmacologia , Técnicas do Sistema de Duplo-Híbrido
4.
Silence ; 4(1): 1, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23561294

RESUMO

BACKGROUND: DNA methylation ensures genome integrity and regulates gene expression in diverse eukaryotes. In Arabidopsis, methylation occurs in three sequence contexts: CG, CHG and CHH. The initial establishment of DNA methylation at all three sequence contexts occurs through a process known as RNA-directed DNA methylation (RdDM), in which small RNAs bound by Argonaute4 (AGO4) guide DNA methylation at homologous loci through the de novo methyltransferase DRM2. Once established, DNA methylation at each of the three sequence contexts is maintained through different mechanisms. Although some players involved in RdDM and maintenance methylation have been identified, the underlying molecular mechanisms are not fully understood. To aid the comprehensive identification of players in DNA methylation, we generated a transgenic reporter system that permits genetic and chemical genetic screens in Arabidopsis. RESULTS: A dual 35S promoter (d35S) driven luciferase (LUC) reporter was introduced into Arabidopsis and LUCL, a line with a low basal level of luciferase activity, was obtained. LUCL was found to be a multi-copy, single-insertion transgene that contains methylated cytosines in CG, CHG and CHH contexts, with the highest methylation in the CG context. Methylation was present throughout the promoter and LUC coding region. Treatment with an inhibitor of cytosine methylation de-repressed luciferase activity. A mutation in MET1, which encodes the CG maintenance methyltransferase, drastically reduced CG methylation and de-repressed LUC expression. Mutations in AGO4 and DRM2 also de-repressed LUC expression, albeit to a smaller extent than loss of MET1. Using LUCL as a reporter line, we performed a chemical screen for compounds that de-repress LUC expression, and identified a chemical, methotrexate, known to be involved in biogenesis of the methyl donor. CONCLUSION: We developed a luciferase-based reporter system, LUCL, which reports both RdDM and CG maintenance methylation in Arabidopsis. The low basal level of LUCL expression provides an easy readout in genetic and chemical genetic screens that will dissect the mechanisms of RdDM and methylation maintenance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...