Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocr Regul ; 54(3): 160-171, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32857721

RESUMO

OBJECTIVE: The aim of the present study was to investigate the transcriptional activity of the GLP-1R, DPP-4, SGLT-1, INSR, and IGF-1R genes in GALT cells of rats with streptozotocin-induced diabetes in both untreated and treated with pentoxifylline, as a non-specific blocker of TNF-α. METHODS: The expression of GLP-1R, DPP-4, SGLT-1, INSR, and IGF-1R genes in GALT cells of rats was studied by real time quantitative polymerase chain reaction. RESULTS: It was shown that the development of diabetes was accompanied by the decrease of GLP-1R and an increase of DPP-4 genes expression in rat ileum. The administration of pentoxifyl-line to diabetic animals led to an increase in the transcriptional activity of GLP-1R on the 4th week and decrease in transcriptional activity of DPP-4 on the 2nd and 4th weeks of the experiment. An increase in the normalized expression of SGLT-1 on the 4th week of the experimental diabetes was also noted, while the administration of pentoxifylline to diabetic animals did not lead to significant changes in this index. The transcriptional activity of the INSR and IGF-1R genes was reduced in diabetic rats and the administration of the non-specific TNF-α blocker - pentoxifylline led to a significant increase only for INSR gene in animals on the 4th week of the experimental diabetes. CONCLUSIONS: The expression of incretins, glucose transporters, and pro-inflammatory cytokines (e.g. TNF-α) in immune cells may be used as markers of several autoimmune pathologies progression such as type 1 diabetes due to their effect on the balance of pro- and anti-inflammatory factors.


Assuntos
Diabetes Mellitus Experimental/genética , Células Secretoras de Insulina/metabolismo , Mucosa Intestinal/metabolismo , Pentoxifilina/administração & dosagem , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Expressão Gênica/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Intestinos/efeitos dos fármacos , Masculino , Pentoxifilina/farmacologia , Ratos , Ratos Wistar , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo , Estreptozocina , Fator de Necrose Tumoral alfa/antagonistas & inibidores
2.
Nat Commun ; 11(1): 276, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31932594

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nat Commun ; 10(1): 4967, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31672972

RESUMO

To build or dissect complex pathways in bacteria and mammalian cells, it is often necessary to recur to at least two plasmids, for instance harboring orthogonal inducible promoters. Here we present SiMPl, a method based on rationally designed split enzymes and intein-mediated protein trans-splicing, allowing the selection of cells carrying two plasmids with a single antibiotic. We show that, compared to the traditional method based on two antibiotics, SiMPl increases the production of the antimicrobial non-ribosomal peptide indigoidine and the non-proteinogenic aromatic amino acid para-amino-L-phenylalanine from bacteria. Using a human T cell line, we employ SiMPl to obtain a highly pure population of cells double positive for the two chains of the T cell receptor, TCRα and TCRß, using a single antibiotic. SiMPl has profound implications for metabolic engineering and for constructing complex synthetic circuits in bacteria and mammalian cells.


Assuntos
Antibacterianos , Bactérias/enzimologia , Farmacorresistência Bacteriana , Inteínas , Engenharia Metabólica/métodos , Plasmídeos/genética , Processamento de Proteína , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T/metabolismo , Resistência a Ampicilina , Linhagem Celular , Resistência ao Cloranfenicol , Cinamatos , Humanos , Higromicina B/análogos & derivados , Piperidonas , Puromicina , Trans-Splicing
4.
Sci Rep ; 9(1): 5119, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914767

RESUMO

Non-ribosomal peptide synthetases (NRPSs) are large, modular enzymes that produce bioactive peptides of tremendous structural and chemical diversity, due to the incorporation, alongside the canonical 20 amino acids, of non-proteinogenic amino acids, fatty acids, sugars and heterocyclic rings. For linear NRPSs, the size and composition of the peptide product is dictated by the number, order and specificity of the individual modules, each made of several domains. Given the size and complexity of NRPSs, most in vitro studies have focused on individual domains, di-domains or single modules extracted from the full-length proteins. However, intermodular interactions could play a critical role and regulate the activity of the domains and modules in unpredictable ways. Here we investigate in vitro substrate activation by three A domains of the tyrocidine synthetase TycC enzyme, systematically comparing their activity when alone (with the respective PCP domain), in pairs (di-modular constructs) or all together (tri-modular construct). Furthermore, we study the impact of mutations in the A or PCP domains in these various constructs. Our results suggest that substrate adenylation and effects of mutations largely depend on the context in which the domains/modules are. Therefore, generalizing properties observed for domains or modules in isolation should be done with caution.


Assuntos
Peptídeo Sintases/química , Domínios Proteicos , Especificidade por Substrato
5.
Chembiochem ; 16(8): 1158-62, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25900689

RESUMO

Inverse-electron-demand Diels-Alder cycloaddition (DAinv ) between strained alkenes and tetrazines is a highly bio-orthogonal reaction that has been applied in the specific labeling of biomolecules. In this work we present a two-step labeling protocol for the site-specific labeling of proteins based on attachment of a highly stable norbornene derivative to a specific peptide sequence by using a mutant of the enzyme lipoic acid ligase A (LplA(W37V) ), followed by the covalent attachment of tetrazine-modified fluorophores to the norbornene moiety through the bio-orthogonal DAinv . We investigated 15 different norbornene derivatives for their selective enzymatic attachment to a 13-residue lipoic acid acceptor peptide (LAP) by using a standardized HPLC protocol. Finally, we used this two-step labeling strategy to label proteins in cell lysates in a site-specific manner and performed cell-surface labeling on living cells.


Assuntos
Norbornanos/química , Norbornanos/metabolismo , Proteínas/química , Coloração e Rotulagem/métodos , Sulfurtransferases/metabolismo , Transporte de Elétrons , Células HEK293 , Humanos , Mutação , Sulfurtransferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...