Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 699: 134387, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31670213

RESUMO

Riverbank filtration is a natural process that may ensure the cleaning of surface water for producing drinking water. For silver nanoparticles (AgNP), physico-chemical interaction with sediment surfaces is one major retention mechanism. However, the effect of flow velocity and the importance of biological retention, such as AgNP attachment to biomass, are not well understood, yet. We investigated AgNP (c = 0.6 mg L-1) transport at different spatial and temporal scales in pristine and previously pond water-aged sediment columns. Transport of AgNP under near-natural conditions was studied in a long-term riverbank filtration experiment over the course of one month with changing flow scenarios (i.e. transport at 0.7 m d-1, stagnation, and remobilization at 1.7 m d-1). To elucidate retention processes, we conducted small-scale lab column experiments at low (0.2 m d-1) and high (0.7 m d-1) flow rate using pristine and aged sediments. Overall, AgNP accumulated in the upper centimeters of the sediment both in lab and outdoor experiments. In the lab study, retention of AgNP by attachment to biological components was very effective under high and low flow rate with nearly complete NP accumulation in the upper 2 mm. When organic material was absent, abiotic filtration mechanisms led to NP retention in the upper 5 to 7 cm of the column. In the long-term study, AgNP were transported up to a depth of 25 cm. For the pristine sediment in the lab study and the outdoor experiments only erratic particle breakthrough was detected in a depth of 15 cm. We conclude that physico-chemical interactions of AgNP with sediment surfaces are efficient in retaining AgNP. The presence of organic material provides additional retention sites which increase the filtration capacity of the system. Nevertheless, erratic breakthrough events might transport NP into deeper sediment layers.


Assuntos
Nanopartículas Metálicas/análise , Prata/análise , Poluentes Químicos da Água/análise , Filtração , Rios , Movimentos da Água
2.
Sci Total Environ ; 688: 288-298, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31233912

RESUMO

The colloidal stability of nanoparticles NP in soil solution is important to assess their potential effects on ecosystems. The aim of this work was to elucidate the interactions between initial particle size di, particle number concentration (N0) as well as the characteristics of dissolved organic matter (DOM) for stabilizing Ag NP and TiO2 NP. In batch experiments using time-resolved dynamic light scattering (DLS), we investigated the aggregation of TiO2 NP (79 nm, 164 nm) and citrate-stabilised Ag NP (73 nm, 180 nm) in Ca2+ solution (2 mM) and two soil solutions, one extracted from a farmland and one from a floodplain soil (each containing 2 mM Ca2+). Our results demonstrate that the initial particle size and the particle number concentration affected aggregation more strongly in the presence of DOM than without DOM. The composition of DOM also affected aggregate size: NP formed larger aggregates in the presence of hydrophilic DOM than in the presence of hydrophobic DOM. Hydrophilic DOM showed a larger charge density than hydrophobic DOM. If Ca2+ is present, it may bridge DOM molecules, which may lead to greater NP destabilization. The results demonstrate that DOM interaction with NP may not only vary for different DOM characteristics (i.e. charge density) but may also be influenced by the presence of multivalent cations and different NP material; thus the effect of DOM on NP colloidal stability is not uniform.

3.
Environ Sci Pollut Res Int ; 26(16): 15905-15919, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30963436

RESUMO

Where surface-functionalized engineered nanoparticles (NP) occur in drinking water catchments, understanding their transport within and between environmental compartments such as surface water and groundwater is crucial for risk assessment of drinking water resources. The transport of NP is mainly controlled by (i) their surface properties, (ii) water chemistry, and (iii) surface properties of the stationary phase. Therefore, functionalization of NP surfaces by organic coatings may change their fate in the environment. In laboratory columns, we compared the mobility of CeO2 NP coated by the synthetic polymer polyacrylic acid (PAA) with CeO2 NP coated by natural organic matter (NOM) and humic acid (HA), respectively. The effect of ionic strength on transport in sand columns was investigated using deionized (DI) water and natural surface water with 2.2 mM Ca2+ (soft) and 4.5 mM Ca2+ (hard), respectively. Furthermore, the relevance of these findings was validated in a near-natural bank filtration experiment using HA-CeO2 NP. PAA-CeO2 NP were mobile under all tested water conditions, showing a breakthrough of 60% irrespective of the Ca2+ concentration. In contrast, NOM-CeO2 NP showed a lower mobility with a breakthrough of 27% in DI and < 10% in soft surface water. In hard surface water, NOM-CeO2 NP were completely retained in the first 2 cm of the column. The transport of HA-CeO2 NP in laboratory columns in soft surface water was lower compared to NOM-CeO2 NP with a strong accumulation of CeO2 NP in the first few centimeters of the column. Natural coatings were generally less stabilizing and more susceptible to increasing Ca2+ concentrations than the synthetic coating. The outdoor column experiment confirmed the low mobility of HA-CeO2 NP under more complex environmental conditions. From our experiments, we conclude that the synthetic polymer is more efficient in facilitating NP transport than natural coatings and hence, CeO2 NP mobility may vary significantly depending on the surface coating.


Assuntos
Cério/análise , Sedimentos Geológicos/química , Nanopartículas/análise , Poluentes Químicos da Água/análise , Água/química , Resinas Acrílicas/química , Cério/química , Filtração , Água Subterrânea/química , Substâncias Húmicas , Nanopartículas/química , Concentração Osmolar , Dióxido de Silício/química , Propriedades de Superfície , Poluentes Químicos da Água/química
4.
Sci Total Environ ; 645: 192-204, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30021176

RESUMO

Riverbank filtration systems are important structures that ensure the cleaning of infiltrating surface water for drinking water production. In our study, we investigated the potential risk for a breakthrough of environmentally aged silver nanoparticles (Ag NP) through these systems. Additionally, we identified factors leading to the remobilization of Ag NP accumulated in surficial sediment layers in order to gain insights into remobilization mechanisms. We conducted column experiments with Ag NP in an outdoor pilot plant consisting of water-saturated sediment columns mimicking a riverbank filtration system. The NP had previously been aged in river water, soil extract, and ultrapure water, respectively. We investigated the depth-dependent breakthrough and retention of NP. In subsequent batch experiments, we studied the processes responsible for a remobilization of Ag NP retained in the upper 10 cm of the sediments, induced by ionic strength reduction, natural organic matter (NOM), and mechanical forces. We determined the amount of remobilized Ag by ICP-MS and differentiated between particulate and ionic Ag after remobilization using GFAAS. The presence of Ag-containing heteroaggregates was investigated by combining filtration with single-particle ICP-MS. Single and erratic Ag breakthrough events were mainly found in 30 cm depth and Ag NP were accumulated in the upper 20 cm of the columns. Soil-aged Ag NP showed the lowest retention of only 54%. Remobilization was induced by the reduction of ionic strength and the presence of NOM in combination with mechanical forces. The presence of calcium in the aging- as well as the remobilizing media reduced the remobilization potential. Silver NP were mainly remobilized as heteroaggregates with natural colloids, while dissolution played a minor role. Our study indicates that the breakthrough potential of Ag NP in riverbank filtration systems is generally low, but the aging in soil increases their mobility. Remobilization processes are associated to co-mobilization with natural colloids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...