Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sustain Chem Eng ; 12(20): 7924-7934, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38783844

RESUMO

Perfluorinated sulfonic acid ionomers are well known for their unique water uptake properties and chemical/mechanical stability. Understanding their performance-stability trade-offs is key to realizing membranes with optimal properties. Terahertz time-domain spectroscopy has been demonstrated to resolve water states inside industrially relevant membranes, producing qualitatively agreeable results to conventional gravimetric analysis and prior demonstrations. Using the proposed humidity-controlled terahertz time-domain spectroscopy, here we quantify this detailed water information inside commercially available Nafion membranes at various humidities for direct comparison against literature values from dynamic vapor sorption, differential scanning calorimetry, and Fourier transform infrared spectroscopy on selected samples. Using this technique therefore opens up opportunities for rapid future parameter space investigation for membrane optimization.

2.
ACS Photonics ; 10(8): 2832-2838, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37602291

RESUMO

Metamaterial resonators have become an efficient and versatile platform in the terahertz frequency range, finding applications in integrated optical devices, such as active modulators and detectors, and in fundamental research, e.g., ultrastrong light-matter investigations. Despite their growing use, characterization of modes supported by these subwavelength elements has proven to be challenging and it still relies on indirect observation of the collective far-field transmission/reflection properties of resonator arrays. Here, we present a broadband time-domain spectroscopic investigation of individual metamaterial resonators via a THz aperture scanning near-field microscope (a-SNOM). The time-domain a-SNOM allows the mapping and quantitative analysis of strongly confined modes supported by the resonators. In particular, a cross-polarized configuration presented here allows an investigation of weakly radiative modes. These results hold great potential to advance future metamaterial-based optoelectronic platforms for fundamental research in THz photonics.

3.
Sci Adv ; 8(15): eabi8398, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427162

RESUMO

Many mid- and far-infrared semiconductor photodetectors rely on a photonic response, when the photon energy is large enough to excite and extract electrons due to optical transitions. Toward the terahertz range with photon energies of a few milli-electron volts, classical mechanisms are used instead. This is the case in two-dimensional electron systems, where terahertz detection is dominated by plasmonic mixing and by scattering-based thermal phenomena. Here, we report on the observation of a quantum, collision-free phenomenon that yields a giant photoresponse at terahertz frequencies (1.9 THz), more than 10-fold as large as expected from plasmonic mixing. We artificially create an electrically tunable potential step within a degenerate two-dimensional electron gas. When exposed to terahertz radiation, electrons absorb photons and generate a large photocurrent under zero source-drain bias. The observed phenomenon, which we call the "in-plane photoelectric effect," provides an opportunity for efficient direct detection across the entire terahertz range.

4.
Nanomaterials (Basel) ; 11(11)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34835762

RESUMO

Metamaterial photonic integrated circuits with arrays of hybrid graphene-superconductor coupled split-ring resonators (SRR) capable of modulating and slowing down terahertz (THz) light are introduced and proposed. The hybrid device's optical responses, such as electromagnetic-induced transparency (EIT) and group delay, can be modulated in several ways. First, it is modulated electrically by changing the conductivity and carrier concentrations in graphene. Alternatively, the optical response can be modified by acting on the device temperature sensitivity by switching Nb from a lossy normal phase to a low-loss quantum mechanical phase below the transition temperature (Tc) of Nb. Maximum modulation depths of 57.3% and 97.61% are achieved for EIT and group delay at the THz transmission window, respectively. A comparison is carried out between the Nb-graphene-Nb coupled SRR-based devices with those of Au-graphene-Au SRRs, and significant enhancements of the THz transmission, group delay, and EIT responses are observed when Nb is in the quantum mechanical phase. Such hybrid devices with their reasonably large and tunable slow light bandwidth pave the way for the realization of active optoelectronic modulators, filters, phase shifters, and slow light devices for applications in chip-scale future communication and computation systems.

5.
Sci Rep ; 7(1): 10625, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878213

RESUMO

We demonstrate how terahertz time-domain spectroscopy (THz-TDS) operating in reflection geometry can be used for quantitative conductivity mapping of large area chemical vapour deposited graphene films on sapphire, silicon dioxide/silicon and germanium. We validate the technique against measurements performed with previously established conventional transmission based THz-TDS and are able to resolve conductivity changes in response to induced back-gate voltages. Compared to the transmission geometry, measurement in reflection mode requires careful alignment and complex analysis, but circumvents the need of a terahertz transparent substrate, potentially enabling fast, contactless, in-line characterisation of graphene films on non-insulating substrates such as germanium.

6.
Light Sci Appl ; 6(10): e17054, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30167200

RESUMO

Resonators and the way they couple to external radiation rely on very different concepts if one considers devices belonging to the photonic and electronic worlds. The terahertz frequency range, however, provides intriguing possibilities for the development of hybrid technologies that merge ideas from both fields in novel functional designs. In this paper, we show that high-quality, subwavelength, whispering-gallery lasers can be combined to form a linear dipole antenna, which creates a very efficient, low-threshold laser emission in a collimated beam pattern. For this purpose, we employ a terahertz quantum-cascade active region patterned into two 19-µm-radius microdisks coupled by a suspended metallic bridge, which simultaneously acts as an inductive antenna and produces the dipole symmetry of the lasing mode. Continuous-wave vertical emission is demonstrated at approximately 3.5 THz in a very regular, low-divergence (±10°) beam, with a high slope efficiency of at least 160 mW A-1 and a mere 6 mA of threshold current, which is ensured by the ultra-small resonator size (VRES/λ3≈10-2). The extremely low power consumption and the superior beam brightness make this concept very promising for the development of miniaturized and portable THz sources to be used in the field for imaging and sensing applications as well as for exploring novel optomechanical intracavity effects.

7.
ACS Nano ; 8(3): 2548-54, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24558983

RESUMO

Split-ring resonators represent the ideal route to achieve optical control of the incident light at THz frequencies. These subwavelength metamaterial elements exhibit broad resonances that can be easily tuned lithographically. We have realized a design based on the interplay between the resonances of metallic split rings and the electronic properties of monolayer graphene integrated in a single device. By varying the major carrier concentration of graphene, an active modulation of the optical intensity was achieved in the frequency range between 2.2 and 3.1 THz, achieving a maximum modulation depth of 18%, with a bias as low as 0.5 V.

8.
Opt Express ; 20(20): 21924-31, 2012 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23037342

RESUMO

We report on the implementation of a confocal microscopy system based on a 2.9 THz quantum cascade laser source. Lateral and axial resolutions better than 70 µm and 400 µm, respectively, are achieved, with a large contrast enhancement compared to the non-confocal arrangement. The capability of resolving overlapping objects lying on different longitudinal planes is also clearly demonstrated.


Assuntos
Microscopia Confocal/instrumentação , Imagem Terahertz/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
IEEE Trans Biomed Eng ; 56(11 Pt 2): 2692-6, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19643702

RESUMO

The design of materials to promote the development and/or regeneration of neuronal tissue requires the understanding of the mechanisms by which the underlying substrate topography can modulate neuronal cell differentiation and migration. We recently demonstrated that plastic nanogratings (alternating lines of grooves and ridges of submicrometer size) can effectively change the neuronal polarity state, selecting bipolar cells with aligned neurites. Here, we address the effect of nanogratings on the migration properties of differentiating PC12 cells and correlate their behavior with the polarity state induced by the substrate. During neuronal differentiation, cell-substrate interaction is sufficient to induce directional migration along the nanogratings. Control cells contacting flat substrates migrated freely in all directions, while cells differentiating on nanogratings showed slower migration characterized by an angular restriction that confined cell movements. Finally, we show that directional migration on nanogratings is linked to a specific organization of the cell cytoskeleton reflecting the nanograting directionality.


Assuntos
Materiais Biocompatíveis/química , Movimento Celular/fisiologia , Regeneração Tecidual Guiada/métodos , Nanoestruturas/química , Nanotecnologia/métodos , Neurônios/citologia , Neurônios/fisiologia , Plásticos/química , Animais , Adesão Celular/fisiologia , Polaridade Celular , Teste de Materiais , Nanoestruturas/ultraestrutura , Células PC12 , Ratos , Propriedades de Superfície
10.
Opt Express ; 14(6): 2344-58, 2006 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19503572

RESUMO

Planar waveguides in nonlinear optical crystals of Sn(2)P(2)S(6) have been produced by He+ ion implantation. The effective indices of the waveguide have been determined and refractive index profiles have been evaluated for the indices along all three principal axes of the optical indicatrix. The depth of the induced optical barrier is n1 = -0.07, n2 = -0.07 and n3 = -0.09 at lambda = 0.633 microm for a fluence Phi = 0.5x10(15)ions/cm(2). Propagation losses for hybrid-n(1) modes are alpha approximately 10dB/cm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...