Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 11(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37230538

RESUMO

BACKGROUND: Tumor necrosis factor superfamily member 14 (TNFRSF14)/herpes virus entry mediator (HVEM) is the ligand for B and T lymphocyte attenuator (BTLA) and CD160-negative immune co-signaling molecules as well as viral proteins. Its expression is dysregulated with an overexpression in tumors and a connection with tumors of adverse prognosis. METHODS: We developed C57BL/6 mouse models co-expressing human (hu)BTLA and huHVEM as well as antagonistic monoclonal antibodies (mAbs) that completely prevent the interactions of HVEM with its ligands. RESULTS: Here, we show that the anti-HVEM18-10 mAb increases primary human αß-T cells activity alone (CIS-activity) or in the presence of HVEM-expressing lung or colorectal cancer cells in vitro (TRANS-activity). Anti-HVEM18-10 synergizes with antiprogrammed death-ligand 1 (anti-PD-L1) mAb to activate T cells in the presence of PD-L1-positive tumors, but is sufficient to trigger T cell activation in the presence of PD-L1-negative cells. In order to better understand HVEM18-10 effects in vivo and especially disentangle its CIS and TRANS effects, we developed a knockin (KI) mouse model expressing human BTLA (huBTLA+/+) and a KI mouse model expressing both huBTLA+/+/huHVEM+/+ (double KI (DKI)). In vivo preclinical experiments performed in both mouse models showed that HVEM18-10 treatment was efficient to decrease human HVEM+ tumor growth. In the DKI model, anti-HVEM18-10 treatment induces a decrease of exhausted CD8+ T cells and regulatory T cells and an increase of effector memory CD4+ T cells within the tumor. Interestingly, mice which completely rejected tumors (±20%) did not develop tumors on rechallenge in both settings, therefore showing a marked T cell-memory phenotype effect. CONCLUSIONS: Altogether, our preclinical models validate anti-HVEM18-10 as a promising therapeutic antibody to use in clinics as a monotherapy or in combination with existing immunotherapies (antiprogrammed cell death protein 1/anti-PD-L1/anti-cytotoxic T-lymphocyte antigen-4 (CTLA-4)).


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Membro 14 de Receptores do Fator de Necrose Tumoral , Animais , Humanos , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Linfócitos T CD8-Positivos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo
2.
Cell Microbiol ; 22(4): e13164, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31953913

RESUMO

The strategies by which intracellular pathogenic bacteria manipulate innate immunity to establish chronicity are poorly understood. Here, we show that Brucella abortus outer membrane protein Omp25 specifically binds the immune cell receptor SLAMF1 in vitro. The Omp25-dependent engagement of SLAMF1 by B. abortus limits NF-κB translocation in dendritic cells (DCs) with no impact on Brucella intracellular trafficking and replication. This in turn decreases pro-inflammatory cytokine secretion and impairs DC activation. The Omp25-SLAMF1 axis also dampens the immune response without affecting bacterial replication in vivo during the acute phase of Brucella infection in a mouse model. In contrast, at the chronic stage of infection, the Omp25/SLAMF1 engagement is essential for Brucella persistence. Interaction of a specific bacterial protein with an immune cell receptor expressed on the DC surface at the acute stage of infection is thus a powerful mechanism to support microbe settling in its replicative niche and progression to chronicity.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Brucella abortus/imunologia , Células Dendríticas/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Inflamação , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/genética , Brucella abortus/genética , Brucella abortus/patogenicidade , Células Dendríticas/imunologia , Feminino , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Ligação Proteica , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/genética
3.
Front Immunol ; 10: 877, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105699

RESUMO

Endometrial Cancer is the most common cancer in the female genital tract in developed countries, and with its increasing incidence due to risk factors such as aging and obesity tends to become a public health issue. However, its immune environment has been less characterized than in other tumors such as breast cancers. NK cells are cytotoxic innate lymphoid cells that are considered as a major anti-tumoral effector cell type which function is drastically altered in tumors which participates to tumor progression. Here we characterize tumor NK cells both phenotypically and functionally in the tumor microenvironment of endometrial cancer. For that, we gathered endometrial tumors, tumor adjacent healthy tissue, blood from matching patients and healthy donor blood to perform comparative analysis of NK cells. First we found that NK cells were impoverished in the tumor infiltrate. We then compared the phenotype of NK cells in the tumor and found that tumor resident CD103+ NK cells exhibited more co-inhibitory molecules such as Tigit, and TIM-3 compared to recruited CD103- NK cells and that the expression of these molecules increased with the severity of the disease. We showed that both chemokines (CXCL12, IP-10, and CCL27) and cytokines profiles (IL-1ß and IL-6) were altered in the tumor microenvironment and might reduce NK cell function and recruitment to the tumor site. This led to hypothesize that the tumor microenvironment reduces resident NK cells cytotoxicity which we confirmed by measuring cytotoxic effector production and degranulation. Taken together, our results show that the tumor microenvironment reshapes NK cell phenotype and function to promote tumor progression.


Assuntos
Neoplasias do Endométrio/imunologia , Células Matadoras Naturais/imunologia , Microambiente Tumoral/imunologia , Antígenos CD/metabolismo , Quimiocina CCL27/sangue , Quimiocina CXCL10/sangue , Quimiocina CXCL12/sangue , Neoplasias do Endométrio/patologia , Endométrio/patologia , Feminino , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Humanos , Imunidade Inata/imunologia , Cadeias alfa de Integrinas/metabolismo , Interleucina-1beta/sangue , Interleucina-6/sangue , Receptores Imunológicos/metabolismo
4.
Virulence ; 7(1): 33-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26606688

RESUMO

Brucella is a Gram-negative bacterium responsible for brucellosis, a worldwide re-emerging zoonosis. Brucella has been shown to infect and replicate within Granulocyte macrophage colony-stimulating factor (GMCSF) in vitro grown bone marrow-derived dendritic cells (BMDC). In this cell model, Brucella can efficiently control BMDC maturation. However, it has been shown that Brucella infection in vivo induces spleen dendritic cells (DC) migration and maturation. As DCs form a complex network composed by several subpopulations, differences observed may be due to different interactions between Brucella and DC subsets. Here, we compare Brucella interaction with several in vitro BMDC models. The present study shows that Brucella is capable of replicating in all the BMDC models tested with a high infection rate at early time points in GMCSF-IL15 DCs and Flt3l DCs. GMCSF-IL15 DCs and Flt3l DCs are more activated than the other studied DC models and consequently intracellular bacteria are not efficiently targeted to the ER replicative niche. Interestingly, GMCSF-DC and GMCSF-Flt3l DC response to infection is comparable. However, the key difference between these 2 models concerns IL10 secretion by GMCSF DCs observed at 48 h post-infection. IL10 secretion can explain the weak secretion of IL12p70 and TNFα in the GMCSF-DC model and the low level of maturation observed when compared to GMCSF-IL15 DCs and Flt3l DCs. These models provide good tools to understand how Brucella induce DC maturation in vivo and may lead to new therapeutic design using DCs as cellular vaccines capable of enhancing immune response against pathogens.


Assuntos
Brucella/patogenicidade , Brucelose/microbiologia , Células Dendríticas/microbiologia , Células Dendríticas/patologia , Animais , Brucella/genética , Brucella/crescimento & desenvolvimento , Brucella/imunologia , Brucelose/imunologia , Brucelose/patologia , Brucelose/prevenção & controle , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Citocinas/imunologia , Células Dendríticas/metabolismo , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Interações Hospedeiro-Patógeno , Interleucina-10/imunologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma , Fator de Necrose Tumoral alfa/imunologia
5.
PLoS Pathog ; 11(3): e1004732, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25781937

RESUMO

The detection of the activities of pathogen-encoded virulence factors by the innate immune system has emerged as a new paradigm of pathogen recognition. Much remains to be determined with regard to the molecular and cellular components contributing to this defense mechanism in mammals and importance during infection. Here, we reveal the central role of the IL-1ß signaling axis and Gr1+ cells in controlling the Escherichia coli burden in the blood in response to the sensing of the Rho GTPase-activating toxin CNF1. Consistently, this innate immune response is abrogated in caspase-1/11-impaired mice or following the treatment of infected mice with an IL-1ß antagonist. In vitro experiments further revealed the synergistic effects of CNF1 and LPS in promoting the maturation/secretion of IL-1ß and establishing the roles of Rac, ASC and caspase-1 in this pathway. Furthermore, we found that the α-hemolysin toxin inhibits IL-1ß secretion without affecting the recruitment of Gr1+ cells. Here, we report the first example of anti-virulence-triggered immunity counteracted by a pore-forming toxin during bacteremia.


Assuntos
Toxinas Bacterianas/imunologia , Infecções por Escherichia coli/imunologia , Proteínas de Escherichia coli/imunologia , Proteínas Hemolisinas/imunologia , Imunidade Inata/imunologia , Transdução de Sinais/imunologia , Animais , Bacteriemia/imunologia , Modelos Animais de Doenças , Escherichia coli/imunologia , Escherichia coli/patogenicidade , Feminino , Interações Hospedeiro-Patógeno/imunologia , Interleucina-1beta/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Virulência , Fatores de Virulência/imunologia
6.
Virulence ; 6(1): 19-28, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25654761

RESUMO

Brucella is the causing agent of a chronic zoonosis called brucellosis. The Brucella ß-1,2 cyclic glucan (CßG) is a virulence factor, which has been described as a potent immune stimulator, albeit with no toxicity for cells and animals. We first used a genome-wide approach to characterize human myeloid dendritic cell (mDC) responses to CßG. Transcripts related to inflammation (IL-6, IL2RA, PTGS2), chemokine (CXCR7, CXCL2) and anti-inflammatory pathways (TNFAIP6, SOCS3) were highly expressed in CßG-treated mDC. In mouse GMCSF-derived DC, CßG triggered the expression of both activation (CXCL2, KC) and inhibition (SOCS3 and TNFAIP6) molecules. We then characterized the inflammatory infiltrates at the level of mouse ear when injected with CßG or LPS. CßG yielded a lower and transient recruitment of neutrophils compared to LPS. The consequence of these dual pro- and anti-inflammatory signals triggered by CßG corresponds to the induction of a controlled local inflammation.


Assuntos
Brucella abortus/imunologia , Células Dendríticas/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , beta-Glucanas/imunologia , Animais , Brucella abortus/patogenicidade , Brucelose/imunologia , Brucelose/microbiologia , Brucelose/patologia , Moléculas de Adesão Celular/biossíntese , Células Cultivadas , Quimiocina CXCL2/biossíntese , Ciclo-Oxigenase 2/biossíntese , Orelha/fisiologia , Feminino , Humanos , Inflamação/imunologia , Subunidade alfa de Receptor de Interleucina-2/biossíntese , Interleucina-6/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Receptores CXCR/biossíntese , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/biossíntese
7.
Artigo em Inglês | MEDLINE | ID: mdl-23847770

RESUMO

Several bacterial pathogens have TIR domain-containing proteins that contribute to their pathogenesis. We identified a second TIR-containing protein in Brucella spp. that we have designated BtpB. We show it is a potent inhibitor of TLR signaling, probably via MyD88. BtpB is a novel Brucella effector that is translocated into host cells and interferes with activation of dendritic cells. In vivo mouse studies revealed that BtpB is contributing to virulence and control of local inflammatory responses with relevance in the establishment of chronic brucellosis. Together, our results show that BtpB is a novel Brucella effector that plays a major role in the modulation of host innate immune response during infection.


Assuntos
Proteínas de Bactérias/metabolismo , Brucella/imunologia , Brucella/patogenicidade , Evasão da Resposta Imune , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/imunologia , Brucelose/imunologia , Brucelose/microbiologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Alinhamento de Sequência , Transdução de Sinais , Análise de Sobrevida , Receptores Toll-Like/imunologia , Fatores de Virulência/imunologia
8.
PLoS One ; 8(2): e55117, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23390517

RESUMO

Lipopolysaccharides or endotoxins are components of Gram-negative enterobacteria that cause septic shock in mammals. However, a LPS carrying hexa-acyl lipid A moieties is highly endotoxic compared to a tetra-acyl LPS and the latter has been considered as an antagonist of hexa-acyl LPS-mediated TLR4 signaling. We investigated the relationship between the structure and the function of bacterial LPS in the context of human and mouse dendritic cell activation. Strikingly, LPS with acylation defects were capable of triggering a strong and early TLR4-dependent DC activation, which in turn led to the activation of the proteasome machinery dampening the pro-inflammatory cytokine secretion. Upon activation with tetra-acyl LPS both mouse and human dendritic cells triggered CD4(+) T and CD8(+) T cell responses and, importantly, human myeloid dendritic cells favored the induction of regulatory T cells. Altogether, our data suggest that LPS acylation controlled by pathogenic bacteria might be an important strategy to subvert adaptive immunity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Lipopolissacarídeos/química , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like/imunologia , Acilação , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunidade Inata/efeitos dos fármacos , Lipopolissacarídeos/imunologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Relação Estrutura-Atividade , Receptor 4 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...