Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38395460

RESUMO

In overactive human osteoclasts, we previously identified an alternative splicing event in LGALS8, encoding galectin-8, resulting in decreased expression of the long isoform. Galectin-8, which modulates cell-matrix interactions and functions intracellularly as a danger recognition receptor, has never been associated with osteoclast biology. In human osteoclasts, inhibition of galectin-8 expression revealed its roles in bone resorption, osteoclast nuclearity, and mTORC1 signaling regulation. Galectin-8 isoform-specific inhibition asserted a predominant role for the short isoform in bone resorption. Moreover, a liquid chromatography with tandem mass spectrometry (LC-MS/MS) proteomic analysis of galectin-8 isoforms performed in HEK293T cells identified 22 proteins shared by both isoforms. Meanwhile, nine interacting partners were specific for the short isoform, and none were unique to the long isoform. Interactors specific for the galectin-8 short isoform included cell adhesion proteins and lysosomal proteins. We confirmed the interactions of galectin-8 with CLCN3, CLCN7, LAMP1, and LAMP2, all known to localize to secretory vesicles, in human osteoclasts. Altogether, our study reveals direct roles of galectin-8 in osteoclast activity, mostly attributable to the short isoform.


Assuntos
Reabsorção Óssea , Galectinas , Osteoclastos , Humanos , Reabsorção Óssea/metabolismo , Canais de Cloreto/metabolismo , Cromatografia Líquida , Galectinas/genética , Galectinas/metabolismo , Células HEK293 , Osteoclastos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteômica , Espectrometria de Massas em Tandem
2.
Front Cell Neurosci ; 16: 807549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173584

RESUMO

Due to their low expression levels, complex multi-pass transmembrane structure, and the current lack of highly specific antibodies, the assessment of endogenous G protein-coupled receptors (GPCRs) remains challenging. While most of the research regarding their functions was performed in heterologous systems overexpressing the receptor, recent advances in genetic engineering methods have allowed the generation of several unique mouse models. These animals proved to be useful to investigate numerous aspects underlying the physiological functions of GPCRs, including their endogenous expression, distribution, interactome, and trafficking processes. Given their significant pharmacological importance and central roles in the nervous system, opioid peptide receptors (OPr) are often referred to as prototypical receptors for the study of GPCR regulatory mechanisms. Although only a few GPCR knock-in mouse lines have thus far been generated, OPr are strikingly well represented with over 20 different knock-in models, more than half of which were developed within the last 5 years. In this review, we describe the arsenal of OPr (mu-, delta-, and kappa-opioid), as well as the opioid-related nociceptin/orphanin FQ (NOP) receptor knock-in mouse models that have been generated over the past years. We further highlight the invaluable contribution of such models to our understanding of the in vivo mechanisms underlying the regulation of OPr, which could be conceivably transposed to any other GPCR, as well as the limitations, future perspectives, and possibilities enabled by such tools.

3.
J Neurosci Res ; 100(1): 99-128, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34559903

RESUMO

Over the past several years, studies have highlighted the δ-opioid receptor (DOPr) as a promising therapeutic target for chronic pain management. While exhibiting milder undesired effects than most currently prescribed opioids, its specific agonists elicit effective analgesic responses in numerous animal models of chronic pain, including inflammatory, neuropathic, diabetic, and cancer-related pain. However, as compared with the extensively studied µ-opioid receptor, the molecular mechanisms governing its trafficking remain elusive. Recent advances have denoted several significant particularities in the regulation of DOPr intracellular routing, setting it apart from the other members of the opioid receptor family. Although they share high homology, each opioid receptor subtype displays specific amino acid patterns potentially involved in the regulation of its trafficking. These precise motifs or "barcodes" are selectively recognized by regulatory proteins and therefore dictate several aspects of the itinerary of a receptor, including its anterograde transport, internalization, recycling, and degradation. With a specific focus on the regulation of DOPr trafficking, this review will discuss previously reported, as well as potential novel trafficking barcodes within the opioid and nociceptin/orphanin FQ opioid peptide receptors, and their impact in determining distinct interactomes and physiological responses.


Assuntos
Dor Crônica , Receptores Opioides , Analgésicos/uso terapêutico , Analgésicos Opioides , Animais , Dor Crônica/tratamento farmacológico , Peptídeos Opioides/fisiologia , Receptores Opioides/fisiologia , Receptores Opioides mu
4.
Biochim Biophys Acta Gen Subj ; 1865(11): 129969, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34352343

RESUMO

BACKGROUND: Mechanisms governing localization, trafficking and signaling of G protein-coupled receptors (GPCRs) are critical in cell function. Protein-protein interactions are determinant in these processes. However, there are very little interacting proteins known to date for the DP1 receptor for prostaglandin D2. METHODS: We performed LC-MS/MS analyses of the DP1 receptor interactome in HEK293 cells. To functionally validate our LC-MS/MS data, we studied the implications of the interaction with the IQGAP1 scaffold protein in the trafficking and signaling of DP1. RESULTS: In addition to expected interacting proteins such as heterotrimeric G protein subunits, we identified proteins involved in signaling, trafficking, and folding localized in various cell compartments. Endogenous DP1-IQGAP1 co-immunoprecipitation was observed in colon cancer HT-29 cells. The interaction was augmented by DP1 agonist activation in HEK293 cells and GST-pulldown assays showed that IQGAP1 binds to intracellular loops 2 and 3 of DP1. Co-localization of the two proteins was observed by confocal microscopy at the cell periphery and in intracellular vesicles in the basal state. PGD2 treatment resulted in the redistribution of the DP1-IQGAP1 co-localization in the perinuclear vicinity. DP1 receptor internalization was promoted by overexpression of IQGAP1, while it was diminished by IQGAP1 knockdown with DsiRNAs. DP1-mediated ERK1/2 activation was augmented and sustained overtime by overexpression of IQGAP1 when compared to DP1 expressed alone. IQGAP1 knockdown decreased ERK1/2 activation by DP1 stimulation. Interestingly, ERK1/2 signaling by DP1 was increased when IQGAP2 was silenced, while it was impaired by IQGAP3 knockdown. CONCLUSIONS: Our findings define the putative DP1 interactome, a patho-physiologically important receptor, and validated the interaction with IQGAP1 in DP1 function. Our data also reveal that IQGAP proteins may differentially regulate GPCR signaling. GENERAL SIGNIFICANCE: The identified putative DP1-interacting proteins open multiple lines of research in DP1 and GPCR biology in various cell compartments.


Assuntos
Prostaglandina D2/metabolismo , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Células Cultivadas , Humanos , Transdução de Sinais
5.
Proc Natl Acad Sci U S A ; 117(23): 13105-13116, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32457152

RESUMO

With over 30% of current medications targeting this family of proteins, G-protein-coupled receptors (GPCRs) remain invaluable therapeutic targets. However, due to their unique physicochemical properties, their low abundance, and the lack of highly specific antibodies, GPCRs are still challenging to study in vivo. To overcome these limitations, we combined here transgenic mouse models and proteomic analyses in order to resolve the interactome of the δ-opioid receptor (DOPr) in its native in vivo environment. Given its analgesic properties and milder undesired effects than most clinically prescribed opioids, DOPr is a promising alternative therapeutic target for chronic pain management. However, the molecular and cellular mechanisms regulating its signaling and trafficking remain poorly characterized. We thus performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses on brain homogenates of our newly generated knockin mouse expressing a FLAG-tagged version of DOPr and revealed several endogenous DOPr interactors involved in protein folding, trafficking, and signal transduction. The interactions with a few identified partners such as VPS41, ARF6, Rabaptin-5, and Rab10 were validated. We report an approach to characterize in vivo interacting proteins of GPCRs, the largest family of membrane receptors with crucial implications in virtually all physiological systems.


Assuntos
Encéfalo/metabolismo , Mapas de Interação de Proteínas/fisiologia , Receptores Opioides delta/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Técnicas de Introdução de Genes , Genes Reporter/genética , Masculino , Camundongos , Camundongos Transgênicos , Dobramento de Proteína , Mapeamento de Interação de Proteínas/métodos , Proteômica , Receptores Opioides delta/genética , Transdução de Sinais/fisiologia , Espectrometria de Massas em Tandem
6.
Cell Signal ; 72: 109641, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32334026

RESUMO

Mechanisms controlling the recycling of G protein-coupled receptors (GPCRs) remain largely unclear. We report that GGA3 (Golgi-associated, γ adaptin ear containing, ADP-ribosylation factor-binding protein 3) regulates the recycling and signaling of the PGD2 receptor DP1 through a new mechanism. An endogenous interaction between DP1 and GGA3 was detected by co-immunoprecipitation in HeLa cells. The interaction was promoted by DP1 agonist stimulation, which was supported by increased DP1-GGA3 colocalization in confocal microscopy. Pulldown assays showed that GGA3 interacts with the intracellular loop 2 and C-terminus of DP1, whereas the receptor interacts with the VHS domain of GGA3. The Arf-binding deficient GGA3 N194A mutant had the same effect as wild-type GGA3 on DP1 trafficking, suggesting a new mechanism for GGA3 in recycling. Depletion of Rab4 inhibited the GGA3 effect on DP1 recycling, revealing a Rab4-dependent mechanism. Interestingly, depletion of L-PGDS (L-type prostaglandin synthase, the enzyme that produces the agonist for DP1) impaired the ability of GGA3 to mediate DP1 recycling, while GGA3 knockdown prevented L-PGDS from promoting DP1 recycling, indicating that both proteins function interdependently. A novel interaction was observed between co-immunoprecipitated endogenous L-PGDS and GGA3 proteins in HeLa cells, and in vitro using purified recombinant proteins. Redistribution of L-PGDS towards GGA3- and Rab4-positive vesicles was induced by DP1 activation. Silencing of GGA3 inhibited ERK1/2 activation following DP1 stimulation. Altogether, our data reveal a novel function for GGA3, in a newly described association with L-PGDS, in the recycling and signaling of a GPCR, namely DP1.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Endocitose , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Prostaglandina D2/metabolismo , Receptores de Prostaglandina/metabolismo , Transdução de Sinais , Proteínas rab4 de Ligação ao GTP/metabolismo , Células HEK293 , Células HeLa , Humanos , Sistema de Sinalização das MAP Quinases , Ligação Proteica , Transporte Proteico
7.
J Biol Chem ; 294(45): 16865-16883, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31575663

RESUMO

Accumulating evidence indicates that G protein-coupled receptors (GPCRs) interact with Rab GTPases during their intracellular trafficking. How GPCRs recruit and activate the Rabs is unclear. Here, we report that depletion of endogenous L-type prostaglandin D synthase (L-PGDS) in HeLa cells inhibited recycling of the prostaglandin D2 (PGD2) DP1 receptor (DP1) to the cell surface after agonist-induced internalization and that L-PGDS overexpression had the opposite effect. Depletion of endogenous Rab4 prevented l-PGDS-mediated recycling of DP1, and l-PGDS depletion inhibited Rab4-dependent recycling of DP1, indicating that both proteins are mutually involved in this pathway. DP1 stimulation promoted its interaction through its intracellular C terminus with Rab4, which was increased by l-PGDS. Confocal microscopy revealed that DP1 activation induces l-PGDS/Rab4 co-localization. l-PGDS/Rab4 and DP1/Rab4 co-immunoprecipitation levels were increased by DP1 agonist treatment. Pulldown assays with purified GST-l-PGDS and His6-Rab4 indicated that both proteins interact directly. l-PGDS interacted preferentially with the inactive, GDP-locked Rab4S22N variant rather than with WT Rab4 or with constitutively active Rab4Q67L proteins. Overexpression and depletion experiments disclosed that l-PGDS partakes in Rab4 activation following DP1 stimulation. Experiments with deletion mutants and synthetic peptides revealed that amino acids 85-92 in l-PGDS are involved in its interaction with Rab4 and in its effect on DP1 recycling. Of note, GTPγS loading and time-resolved FRET assays with purified proteins suggested that l-PGDS enhances GDP-GTP exchange on Rab4. Our results reveal how l-PGDS, which produces the agonist for DP1, regulates DP1 recycling by participating in Rab4 recruitment and activation.


Assuntos
Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Prostaglandina D2/metabolismo , Receptores de Prostaglandina/metabolismo , Proteínas rab4 de Ligação ao GTP/metabolismo , Ativação Enzimática , Células HeLa , Humanos , Oxirredutases Intramoleculares/química , Lipocalinas/química , Ligação Proteica , Domínios Proteicos , Transporte Proteico
8.
Methods Mol Biol ; 1947: 289-302, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30969423

RESUMO

G protein-coupled receptors (GPCRs) contain highly hydrophobic domains that are subject to aggregation when exposed to the crowded environment of the cytoplasm. Many events can lead to protein aggregation such as mutations, endoplasmic reticulum (ER) stress, and misfolding. These processes have been widely known to impact GPCR folding, maturation, and localization. Protein aggregates are transported toward the microtubule-organizing center via dynein to form a large juxta-nuclear structure called the aggresome, and in due course, are then targeted for degradation. Here, we describe a method to study aggregation of GPCRs by fluorescence microscopy.


Assuntos
Microscopia de Fluorescência/métodos , Multimerização Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Dobramento de Proteína
9.
Biochim Biophys Acta Mol Cell Res ; 1866(8): 1249-1259, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30951783

RESUMO

Intact store-operated calcium entry (SOCE) mechanisms ensure the maintenance of Ca2+ homeostasis in cardiomyocytes while their dysregulation promotes the development of cardiomyopathies. To better understand this calcium handling process in cardiomyocytes, we sought to identify unknown protein partners of stromal interaction molecule 1 (STIM1), a main regulatory protein of SOCE. We identified the muscle-related coiled-coil protein (MURC), also known as Cavin-4, as a candidate and showed that MURC interacts with STIM1 in cardiomyocytes. This interaction occurs via the HR1 and ERM domains of MURC and STIM1, respectively. Our results also demonstrated that the overexpression of MURC in neonatal rat ventricular myocytes (NRVM) is sufficient to potentiate SOCE and that its HR1 domain is required to mediate this effect. Interestingly, the R140W-MURC mutant, a missense variant of the HR1 domain associated with human dilated cardiomyopathy, exacerbates the SOCE increase in NRVM. Although the endogenous expression of STIM1 and Ca2+ channel Orai1 is not modulated under these conditions, we showed that MURC increases the interaction between these proteins under resting conditions. Our study provides novel evidence that MURC regulates SOCE by interacting with STIM1 in cardiomyocytes. In addition, we identified a first potential mechanism by which the R140W mutation of MURC may contribute to calcium mishandling and the development of cardiomyopathies.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Cardiomiopatia Dilatada/metabolismo , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Substituição de Aminoácidos , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Células Cultivadas , Humanos , Proteínas Musculares/genética , Mutação de Sentido Incorreto , Miócitos Cardíacos/patologia , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Domínios Proteicos , Ratos , Ratos Sprague-Dawley , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Proteínas de Transporte Vesicular/genética
10.
Mol Cell Neurosci ; 79: 53-63, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28041939

RESUMO

The delta opioid receptor (DOPr) is known to be mainly expressed in intracellular compartments. It remains unknown why DOPr is barely exported to the cell surface, but it seems that a substantial proportion of the immature receptor is trapped within the endoplasmic reticulum (ER) and the Golgi network. In the present study, we performed LC-MS/MS analysis to identify putative protein partners involved in the retention of DOPr. Analysis of the proteins co-immunoprecipitating with Flag-DOPr in transfected HEK293 cells revealed the presence of numerous subunits of the coatomer protein complex I (COPI), a vesicle-coating complex involved in recycling resident proteins from the Golgi back to the ER. Further analysis of the amino acid sequence of DOPr identified multiple consensus di-lysine and di-arginine motifs within the intracellular segments of DOPr. Using cell-surface ELISA and GST pulldown assays, we showed that DOPr interacts with COPI through its intracellular loops 2 and 3 (ICL2 and ICL3, respectively) and that the mutation of the K164AK166 (ICL2) or K250EK252 (ICL3) putative COPI binding sites increased the cell-surface expression of DOPr in transfected cells. Altogether, our results indicate that COPI is a binding partner of DOPr and provide a putative mechanism to explain why DOPr is highly retained inside the cells.


Assuntos
Complexo I de Proteína do Envoltório/metabolismo , Sinais Direcionadores de Proteínas , Receptores Opioides delta/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Transporte Proteico , Receptores Opioides delta/química
11.
Mol Biol Cell ; 27(24): 3800-3812, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27708139

RESUMO

Mechanisms that prevent aggregation and promote folding of nascent G protein-coupled receptors (GPCRs) remain poorly understood. We identified chaperonin containing TCP-1 subunit eta (CCT7) as an interacting partner of the ß-isoform of thromboxane A2 receptor (TPß) by yeast two-hybrid screening. CCT7 coimmunoprecipitated with overexpressed TPß and ß2-adrenergic receptor (ß2AR) in HEK 293 cells, but also with endogenous ß2AR. CCT7 depletion by small interfering RNA reduced total and cell-surface expression of both receptors and caused redistribution of the receptors to juxtanuclear aggresomes, significantly more so for TPß than ß2AR. Interestingly, Hsp90 coimmunoprecipitated with ß2AR but virtually not with TPß, indicating that nascent GPCRs can adopt alternative folding pathways. In vitro pull-down assays showed that both receptors can interact directly with CCT7 through their third intracellular loops and C-termini. We demonstrate that Trp334 in the TPß C-terminus is critical for the CCT7 interaction and plays an important role in TPß maturation and cell-surface expression. Of note, introducing a tryptophan in the corresponding position of the TPα isoform confers the CCT7-binding and maturation properties of TPß. We show that an interaction with a subunit of the CCT/TCP-1 ring complex (TRiC) chaperonin complex is involved in regulating aggregation of nascent GPCRs and in promoting their proper maturation and expression.


Assuntos
Chaperonina com TCP-1/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Chaperonina com TCP-1/fisiologia , Células HEK293 , Humanos , Imunoprecipitação , Ligação Proteica , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/fisiologia , Transdução de Sinais , Transfecção , Técnicas do Sistema de Duplo-Híbrido
12.
J Cell Sci ; 127(Pt 1): 111-23, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24190883

RESUMO

We and others have shown that trafficking of G-protein-coupled receptors is regulated by Rab GTPases. Cargo-mediated regulation of vesicular transport has received great attention lately. Rab GTPases, which form the largest branch of the Ras GTPase superfamily, regulate almost every step of vesicle-mediated trafficking. Rab GTPases are well-recognized targets of human diseases but their regulation and the mechanisms connecting them to cargo proteins are still poorly understood. Here, we show by overexpression and depletion studies that HACE1, a HECT-domain-containing ubiquitin ligase, promotes the recycling of the ß2-adrenergic receptor (ß2AR), a prototypical G-protein-coupled receptor, through a Rab11a-dependent mechanism. Interestingly, the ß2AR in conjunction with HACE1 triggered ubiquitylation of Rab11a, as observed by western blot analysis. LC-MS/MS experiments determined that Rab11a is ubiquitylated on Lys145. A Rab11a-K145R mutant failed to undergo ß2AR-HACE1-induced ubiquitylation and inhibited the HACE1-mediated recycling of the ß2AR. Rab11a, but not Rab11a-K145R, was activated by ß2AR-HACE1, indicating that ubiquitylation of Lys145 is involved in activation of Rab11a. Co-expression of ß2AR-HACE1 also potentiated ubiquitylation of Rab6a and Rab8a, but not of other Rab GTPases that were tested. We report a novel regulatory mechanism of Rab GTPases through their ubiquitylation, with associated functional effects demonstrated on Rab11a. This suggests a new pathway whereby a cargo protein, such as a G-protein-coupled receptor, can regulate its own trafficking by inducing the ubiquitylation and activation of a Rab GTPase.


Assuntos
Receptores Adrenérgicos beta 2/genética , Ubiquitina-Proteína Ligases/genética , Proteínas rab de Ligação ao GTP/genética , Sequência de Aminoácidos , Arginina/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica , Células HEK293 , Humanos , Lisina/metabolismo , Dados de Sequência Molecular , Mutação , Ligação Proteica , Transporte Proteico , Receptores Adrenérgicos beta 2/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas rab de Ligação ao GTP/metabolismo
13.
J Cell Physiol ; 228(1): 99-109, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22553130

RESUMO

P2Y(2) receptor expression is increased in intestinal epithelial cells (IECs) during inflammatory bowel diseases (IBDs). In this context, P2Y(2) stimulates PGE(2) release by IECs, suggesting a role in wound healing. For this study, we have used the non-cancerous IEC-6 cell line. IEC-6 cell migration was determined using Boyden chambers and the single-edged razor blade model of wounding. The receptor was activated using ATP, UTP, or 2-thioUTP. Pharmacological inhibitors, a blocking peptide, a neutralizing antibody and interfering RNAs were used to characterize the signaling events. Focal adhesions and microtubule (MT) dynamics were determined by immunofluorescence using anti-vinculin and anti-acetylated-α-tubulin antibodies, respectively. In vivo, the dextran sodium sulfate mouse model of colitis was used to characterize the effects of P2Y(2) agonist 2-thioUTP on remission. We showed that P2Y(2) increased cell migration and wound closure by recruiting Go protein with the cooperation of integrin α(v) . Following P2Y(2) activation, we demonstrated that GSK3ß activity was inhibited in response to Akt activation. This leads to MT stabilization and increased number of focal adhesions. In vivo, P2Y(2) activation stimulates remission, as illustrated by a reduction in the disease activity index values and histological scores as compared to control mice. These findings highlight a novel function for this receptor in IECs. They also illustrate that P2Y receptors could be targeted for the development of innovative therapies for the treatment of IBDs.


Assuntos
Colite/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Microtúbulos/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Cálcio/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Colite/induzido quimicamente , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Integrina alfaV/genética , Integrina alfaV/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Agonistas do Receptor Purinérgico P2Y/farmacologia , Ratos , Receptores Purinérgicos P2Y2/genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/imunologia , Tubulina (Proteína)/metabolismo , Uridina Trifosfato/farmacologia , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...