Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14211, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902303

RESUMO

Southern right whales (SRWs, Eubalaena australis) have been observed feeding both at and below the surface (< 10 m) in Golfo Nuevo (42°42' S, 64°30' W), Península Valdés, Argentina, an area traditionally recognized as calving ground. In addition, we documented diving feeding behavior in SRWs during their stay in this gulf, which has not been previously described. We assessed this behavior using suction-cup-attached video-imaging tags (CRITTERCAMs) on individual whales. A total of eight CRITTERCAM deployments were successful, and feeding events were documented in all SRWs successfully equipped with CRITTERCAMs. The highest speeds occurred during the ascent phase, and the average diving time was 6 min 45 s ± 3 min 41 s for SRWs. Concurrently, zooplankton samples were collected from the subsurface and bottom of the water in areas where tagged whales dived to assess differences in composition, abundance, and biomass. Copepods dominated the upper layer, while euphausiids were more abundant in the deeper sample. Furthermore, zooplankton total biomass was five times higher at depth (2515.93 mg/m3) compared to the subsurface (500.35 mg/m3). Differences in zooplankton characteristics between depths, combined with CRITTERCAM videos, indicated that SRWs exploit high concentrations of organisms near the seafloor during daytime feeding dives. This study provides baseline insights into how SRWs utilize Península Valdés during their stay in the area.


Assuntos
Comportamento Alimentar , Baleias , Zooplâncton , Animais , Argentina , Zooplâncton/fisiologia , Baleias/fisiologia , Comportamento Alimentar/fisiologia , Mergulho , Comportamento Predatório/fisiologia
2.
PLoS One ; 17(11): e0276623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36350829

RESUMO

Movement is a key factor in the survival and reproduction of most organisms with important links to bioenergetics and population dynamics. Animals use movement strategies that minimize the costs of locating resources, maximizing energy gains. Effectiveness of these strategies depends on the spatial distribution, variability and predictability of resources. The study of fine-scale movement of small cetaceans in the pelagic domain is limited, in part because of the logistical difficulties associated with tagging and tracking them. Here we describe and model the fine-scale movement patterns of two pelagic dolphin species using georeferenced movement and behavioral data obtained by tracking dolphin groups on board small vessels. Movement patterns differed by species, group sizes and seasons. Dusky dolphin groups moved shorter distances when feeding and longer distances when traveling whereas the common dolphin did the same only when they moved in large groups. In summer, both dolphins cover longer distances in a more linear path, while in winter the movement is more erratic and moving shorter distances. Both species of dolphins prey on small pelagic fishes, which are patchily distributed and show seasonal variability in school sizes and distribution. However, dusky dolphins rely on anchovy to a larger extent than common dolphins. In Nuevo Gulf, anchovy shoals are smaller and separated by shorter distances in winter and dusky dolphins´ movement pattern is consistent with this. Dusky and common dolphins are impacted by tourism and fisheries. Further modelling of movement could be inform spatial based management tools.


Assuntos
Golfinhos Comuns , Golfinhos , Animais , Estações do Ano , Clima , Pesqueiros , Peixes
3.
Oecologia ; 198(1): 21-34, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34800166

RESUMO

In waters off Península Valdés (PV), Argentina, southern right whales (SRW, Eubalaena australis) are occasionally exposed to domoic acid (DA), a neurotoxin produced by diatoms of the genus Pseudo-nitzschia. Domoic acid toxicity in marine mammals can cause gastrointestinal and neurological clinical signs, alterations in hematologic and endocrine variables, and can be fatal in extreme cases. In this study, we validated an enzyme immunoassay to quantify fecal glucocorticoid metabolites (fGCm) in 16 SRW fecal samples from live and dead stranded whales in PV from 2013 to 2018 and assessed fGCm levels associated with DA exposure. Overall, fGCm levels were significantly lower in SRWs with detectable fecal DA (n = 3) as compared to SRWs with undetectable fecal DA levels (n = 13). The highest fecal DA was observed in a live lactating female, which had low fGCm compared to the other lactating females studied. The highest fGCm was observed in a lactating female with undetectable DA; interestingly, at the time of sample collection, this female was sighted with two calves, an extremely unusual occurrence in this species. Though the sample size of these exceptionally rare breeding-season fecal samples was unavoidably small, our study provides evidence of potential adrenal alterations in whales exposed to an environmental neurotoxin such as DA.


Assuntos
Lactação , Baleias , Animais , Feminino , Ácido Caínico/análogos & derivados , Estações do Ano
4.
Environ Toxicol Chem ; 38(10): 2209-2223, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31343776

RESUMO

In the Northern Patagonian gulfs of Argentina (Golfo Nuevo and Golfo San José), blooms of toxigenic microalgae and the detection of their associated phycotoxins are recurrent phenomena. The present study evaluated the transfer of phycotoxins from toxigenic microalgae to mesozooplankton in Golfo Nuevo and Golfo San José throughout an annual cycle (December 2014-2015 and January 2015-2016, respectively). In addition, solid-phase adsorption toxin tracking (SPATT) samplers were deployed for the first time in these gulfs, to estimate the occurrence of phycotoxins in the seawater between the phytoplankton samplings. Domoic acid was present throughout the annual cycle in SPATT samplers, whereas no paralytic shellfish poisoning toxins were detected. Ten toxigenic species were identified: Alexandrium catenella, Dinophysis acuminata, Dinophysis acuta, Dinophysis tripos, Dinophysis caudata, Prorocentrum lima, Pseudo-nitzschia australis, Pseudo-nitzschia calliantha, Pseudo-nitzschia fraudulenta, and Pseudo-nitzschia pungens. Lipophilic and hydrophilic toxins were detected in phytoplankton and mesozooplankton from both gulfs. Pseudo-nitzschia spp. were the toxigenic species most frequent in these gulfs. Consequently, domoic acid was the phycotoxin most abundantly detected and transferred to upper trophic levels. Spirolides were detected in phytoplankton and mesozooplankton for the first time in the study area. Likewise, dinophysistoxins were found in mesozooplankton from both gulfs, and this is the first report of the presence of these phycotoxins in zooplankton from the Argentine Sea. The dominance of calanoid copepods indicates that they were the primary vector of phycotoxins in the pelagic trophic web. Environ Toxicol Chem 2019;38:2209-2223. © 2019 SETAC.


Assuntos
Toxinas Marinhas/toxicidade , Microalgas/química , Zooplâncton/metabolismo , Adsorção , Animais , Argentina , Biomassa , Diatomáceas/efeitos dos fármacos , Dinoflagellida/efeitos dos fármacos , Geografia , Ácido Caínico/análogos & derivados , Ácido Caínico/análise , Fitoplâncton/efeitos dos fármacos , Estações do Ano , Água do Mar , Zooplâncton/efeitos dos fármacos
5.
Harmful Algae ; 68: 248-257, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28962985

RESUMO

The gulfs that surround Península Valdés (PV), Golfo Nuevo and Golfo San José in Argentina, are important calving grounds for the southern right whale Eubalaena australis. However, high calf mortality events in recent years could be associated with phycotoxin exposure. The present study evaluated the transfer of domoic acid (DA) from Pseudo-nitzschia spp., potential producers of DA, to living and dead right whales via zooplanktonic vectors, while the whales are on their calving ground at PV. Phytoplankton and mesozooplankton (primary prey of the right whales at PV and potential grazers of Pseudo-nitzschia cells) were collected during the 2015 whale season and analyzed for species composition and abundance. DA was measured in plankton and fecal whale samples (collected during whale seasons 2013, 2014 and 2015) using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The genus Pseudo-nitzschia was present in both gulfs with abundances ranging from 4.4×102 and 4.56×105 cell l-1. Pseudo-nitzschia australis had the highest abundance with up to 4.56×105 cell l-1. DA in phytoplankton was generally low, with the exception of samples collected during a P. australis bloom. No clear correlation was found between DA in phytoplankton and mesozooplankton samples. The predominance of copepods in mesozooplankton samples indicates that they were the primary vector for the transfer of DA from Pseudo-nitzschia spp. to higher trophic levels. High levels of DA were detected in four whale fecal samples (ranging from 0.30 to 710µgg-1 dry weight of fecal sample or from 0.05 and 113.6µgg-1 wet weight assuming a mean water content of 84%). The maximum level of DA detected in fecal samples (710µg DA g-1 dry weight of fecal sample) is the highest reported in southern right whales to date. The current findings demonstrate for the first time that southern right whales, E. australis, are exposed to DA via copepods as vectors during their calving season in the gulfs of PV.


Assuntos
Exposição Ambiental/análise , Monitoramento Ambiental , Cadeia Alimentar , Ácido Caínico/análogos & derivados , Baleias/metabolismo , Animais , Argentina , Clorofila A/análise , Fezes/química , Feminino , Geografia , Ácido Caínico/toxicidade , Estações do Ano , Zooplâncton/metabolismo
6.
Conserv Biol ; 26(4): 708-16, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22624561

RESUMO

In Patagonia, Argentina, watching dolphins, especially dusky dolphins (Lagenorhynchus obscurus), is a new tourist activity. Feeding time decreases and time to return to feeding after feeding is abandoned and time it takes a group of dolphins to feed increase in the presence of boats. Such effects on feeding behavior may exert energetic costs on dolphins and thus reduce an individual's survival and reproductive capacity or maybe associated with shifts in distribution. We sought to predict which behavioral changes modify the activity pattern of dolphins the most. We modeled behavioral sequences of dusky dolphins with Markov chains. We calculated transition probabilities from one activity to another and arranged them in a stochastic matrix model. The proportion of time dolphins dedicated to a given activity (activity budget) and the time it took a dolphin to resume that activity after it had been abandoned (recurrence time) were calculated. We used a sensitivity analysis of Markov chains to calculate the sensitivity of the time budget and the activity-resumption time to changes in behavioral transition probabilities. Feeding-time budget was most sensitive to changes in the probability of dolphins switching from traveling to feeding behavior and of maintaining feeding behavior. Thus, an increase in these probabilities would be associated with the largest reduction in the time dedicated to feeding. A reduction in the probability of changing from traveling to feeding would also be associated with the largest increases in the time it takes dolphins to resume feeding. To approach dolphins when they are traveling would not affect behavior less because presence of the boat may keep dolphins from returning to feeding. Our results may help operators of dolphin-watching vessels minimize negative effects on dolphins.


Assuntos
Golfinhos/fisiologia , Comportamento Alimentar , Atividades Humanas , Navios , Animais , Argentina , Comportamento Animal , Conservação dos Recursos Naturais , Humanos , Cadeias de Markov , Modelos Biológicos , Sensibilidade e Especificidade , Estresse Fisiológico , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...