RESUMO
The aim of this paper is to analyse the thermal effects in a wind tunnel experiment to simulate the planetary boundary layer (PBL). Experiments were performed in the wind tunnel of the Laboratory of Constructions Aerodynamics at the Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul State, Brazil. This wind tunnel is a closed return low-speed wind tunnel specifically designed for dynamic and static studies on civil construction models. As a novelty, one of the experimental sections of the wind tunnel was equipped with a metal sheet with Peltier elements coupled to it. In other words, thermal effects generating new flow patterns become feasible and open pathways to compare wind tunnel simulations to those in the PBL. Furthermore, measurements obtained with the smooth floor of the wind tunnel were repeated under the same conditions with the addition of the roughness in the floor, and the mechanical turbulence generated by the surface roughness significantly amplified the exchange of momentum and heat between the regions located in vertical direction of the wind tunnel boundary layer. In the presence of turbulent heat flux near the surface, thermal effects contribute to the increase of the turbulence intensity. Turbulent energy spectra for flow velocities and different heights were obtained using the Hilbert-Huang transform method, and the observed convective turbulence energy spectra behavior reproduced those measured in an unstable surface PBL.
RESUMO
Considering the influence of the downslope windstorm called "Vento Norte" (VNOR; Portuguese for "North Wind") in planetary boundary layer turbulent features, a new set of turbulent parameterizations, which are to be used in atmospheric dispersion models, has been derived. Taylor's statistical diffusion theory, velocity spectra obtained at four levels (3, 6, 14, and 30 m) in a micrometeorological tower, and the energy-containing eddy scales are used to calculate neutral planetary boundary layer turbulent parameters. Vertical profile formulations of the wind velocity variances and Lagrangian decorrelation time scales are proposed, and to validate this new parameterization, it is applied in a Lagrangian Stochastic Particle Dispersion Model to simulate the Prairie Grass concentration experiments. The simulated concentration results were shown to agree with those observed.
Assuntos
Modelos Teóricos , Vento , DifusãoRESUMO
The processes of water transfer in the soil-plant-atmosphere system are strongly affected by soil use and management. Differences in the dynamics of soil water transfer between no-tillage (NT) and conventional tillage (CT) practices during a soybean (Glycine max) growing season in southern Brazil were assessed in this study. All the water balance components were analyzed during the soybean growing season (2009/2010). Rainfall, runoff, soil water storage and hydro-physical soil properties were analyzed under two tillage systems. The land-atmosphere water vapor exchanges, obtained from eddy covariance stations, were analyzed with regard to the soybean agroecosystem. Characterizations of soil water storage were also formulated in the 2006/2007 and 2008/2009 soybean growing seasons under the NT system. During the periods without rain, the soil water content under NT was greater than under CT. The soil superficial layer, more porous under NT, contributed to less runoff during rainy events. Moreover, under NT conditions the water supply was always high, between 0.2 - 0.5 m. The total evapotranspiration in the soybean agroecosystem growing season was 410.8 mm.(AU)
Assuntos
Estações do Ano , Análise do Solo , Glycine max , Evapotranspiração , Balanço HidrológicoRESUMO
The processes of water transfer in the soil-plant-atmosphere system are strongly affected by soil use and management. Differences in the dynamics of soil water transfer between no-tillage (NT) and conventional tillage (CT) practices during a soybean (Glycine max) growing season in southern Brazil were assessed in this study. All the water balance components were analyzed during the soybean growing season (2009/2010). Rainfall, runoff, soil water storage and hydro-physical soil properties were analyzed under two tillage systems. The land-atmosphere water vapor exchanges, obtained from eddy covariance stations, were analyzed with regard to the soybean agroecosystem. Characterizations of soil water storage were also formulated in the 2006/2007 and 2008/2009 soybean growing seasons under the NT system. During the periods without rain, the soil water content under NT was greater than under CT. The soil superficial layer, more porous under NT, contributed to less runoff during rainy events. Moreover, under NT conditions the water supply was always high, between 0.2 - 0.5 m. The total evapotranspiration in the soybean agroecosystem growing season was 410.8 mm.