Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 27: 685-698, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35070496

RESUMO

MicroRNAs (miRs) are a class of endogenously expressed non-coding RNAs that negatively regulate gene expression within cells and participate in maintaining cellular homeostasis. By targeting 3' UTRs of target genes, individual miRs can control a wide array of gene expressions. Previous research has shed light upon the fact that aberrantly expressed miRs within cells can pertain to diseased conditions, such as cancer. Malignancies caused due to miRs are because of the high expression of onco-miRs or feeble expression of tumor-suppressing miRs. Studies have also shown miRs to engage in epithelial to mesenchymal transition (EMT), which allows cancer cells to become more invasive and metastasize. miR-21 is an onco-miR highly expressed in breast cancer cells and targets protein PTEN, which abrogates EMT. Therefore, we discuss an approach where in-house-developed peptidic amino sugar molecules have been used to target pre-miR-21 to inhibit miR-21 biogenesis, and hence antagonize its tumor-causing effect and inhibit EMT. Our study shows that small-molecule-based fine-tuning of miR expression can cause genotypic as well as phenotypic changes and also reinstates the potential and importance of nucleic acid therapeutics.

2.
Medchemcomm ; 9(7): 1147-1154, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30109002

RESUMO

Epithelial to mesenchymal transition (EMT) is a process in which epithelial cells lose cell polarity and cell-cell adhesion and gain migratory and invasive properties to become mesenchymal cells that are very vital for development, wound healing and stem cell behavior and contribute pathologically to fibrosis and cancer progression. miR21, a potent regulator of the tumor suppressor gene PTEN, can be silenced to reverse EMT, thereby providing an attractive target for abrogating the malignant behavior of breast cancer. Here, we report the design, synthesis and binding of a peptidic-aminoglycoside (PA) based chemical library against pre-miR21 that led to the identification of a group of small molecules that bind to pre-miR21 with high affinities and antagonize miR-21 maturation and function, thereby reversing EMT. The approach described here offers a promising miRNA targeting platform where such aminosugar conjugates can be similarly used to target other oncogenic miRNAs. Minor changes in the amino acid sequence allow us to tailor the binding effectiveness and downstream biological effects, thus making this approach a potentially tunable method of regulation of miRNA function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...