Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
Commun Biol ; 7(1): 716, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858589

RESUMO

The awake mammalian brain is functionally organized in terms of large-scale distributed networks that are constantly interacting. Loss of consciousness might disrupt this temporal organization leaving patients unresponsive. We hypothesize that characterizing brain activity in terms of transient events may provide a signature of consciousness. For this, we analyze temporal dynamics of spatiotemporally overlapping functional networks obtained from fMRI transient activity across different anesthetics and levels of anesthesia. We first show a striking homology in spatial organization of networks between monkeys and humans, indicating cross-species similarities in resting-state fMRI structure. We then track how network organization shifts under different anesthesia conditions in macaque monkeys. While the spatial aspect of the networks is preserved, their temporal dynamics are highly affected by anesthesia. Networks express for longer durations and co-activate in an anesthetic-specific configuration. Additionally, hierarchical brain organization is disrupted with a consciousness-level-signature role of the default mode network. In conclusion, large-scale brain network temporal dynamics capture differences in anesthetic-specific consciousness-level, paving the way towards a clinical translation of these cortical signature.


Assuntos
Encéfalo , Estado de Consciência , Imageamento por Ressonância Magnética , Estado de Consciência/efeitos dos fármacos , Estado de Consciência/fisiologia , Animais , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Humanos , Anestesia , Masculino , Macaca mulatta , Adulto , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/efeitos dos fármacos , Feminino , Mapeamento Encefálico/métodos
2.
Sci Data ; 11(1): 590, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839770

RESUMO

The Individual Brain Charting (IBC) is a multi-task functional Magnetic Resonance Imaging dataset acquired at high spatial-resolution and dedicated to the cognitive mapping of the human brain. It consists in the deep phenotyping of twelve individuals, covering a broad range of psychological domains suitable for functional-atlasing applications. Here, we present the inclusion of task data from both naturalistic stimuli and trial-based designs, to uncover structures of brain activation. We rely on the Fast Shared Response Model (FastSRM) to provide a data-driven solution for modelling naturalistic stimuli, typically containing many features. We show that data from left-out runs can be reconstructed using FastSRM, enabling the extraction of networks from the visual, auditory and language systems. We also present the topographic organization of the visual system through retinotopy. In total, six new tasks were added to IBC, wherein four trial-based retinotopic tasks contributed with a mapping of the visual field to the cortex. IBC is open access: source plus derivatives imaging data and meta-data are available in public repositories.


Assuntos
Mapeamento Encefálico , Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Filmes Cinematográficos , Córtex Visual/fisiologia , Córtex Visual/diagnóstico por imagem
3.
Neuron ; 112(10): 1527-1530, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754371

RESUMO

Stanislas Dehaene is a cognitive neuroscientist elucidating the biological mechanisms that give rise to human perception and cognition. In a conversation with Neuron, he talks about his ongoing interest in consciousness research, the role of theory in neuroscience, and his current work on education and the science of learning.


Assuntos
Estado de Consciência , Humanos , História do Século XXI , Estado de Consciência/fisiologia , História do Século XX , Neurociências/história , Aprendizagem/fisiologia , Neurociência Cognitiva/história
4.
Open Mind (Camb) ; 8: 535-557, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746855

RESUMO

PURPOSE: How does lexical decision behavior vary in students with the same grade level (all students were in their first year of middle-school), but different levels of reading fluency? Here, we tested a prediction of the dual-route model: as fluency increases, variations in the results may reflect a decreasing reliance on decoding and an increasing reliance on the lexical route. METHOD: 1,501 French 6th graders passed a one-minute speeded reading-aloud task evaluating fluency, and a ten-minute computerized lexical decision task evaluating the impact of lexicality, length, word frequency and pseudoword type. RESULTS: As predicted, the word length effect varied dramatically with reading fluency, with the least fluent students showing a length effect even for frequent words. The frequency effect also varied, but solely in proportion to overall reading speed, suggesting that frequency affects the decision stage similarly in all readers, while length disproportionately impacts poor readers. Response times and errors were also affected by pseudoword type (e.g., letter substitutions or transpositions), but these effects showed minimal variation with fluency. Overall, lexical decision variables were excellent predictors of reading fluency (r = 0.62). CONCLUSION: Our results highlight the variability in middle-school reading ability and describe how a simple lexical decision task can be used to assess students' mental lexicon (vocabulary) and the automatization of reading skills.

5.
Cell Rep ; 43(3): 113952, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483904

RESUMO

When exposed to sensory sequences, do macaque monkeys spontaneously form abstract internal models that generalize to novel experiences? Here, we show that neuronal populations in macaque ventrolateral prefrontal cortex jointly encode visual sequences by separate codes for the specific pictures presented and for their abstract sequential structure. We recorded prefrontal neurons while macaque monkeys passively viewed visual sequences and sequence mismatches in the local-global paradigm. Even without any overt task or response requirements, prefrontal populations spontaneously form representations of sequence structure, serial order, and image identity within distinct but superimposed neuronal subspaces. Representations of sequence structure rapidly update following single exposure to a mismatch sequence, while distinct populations represent mismatches for sequences of different complexity. Finally, those representations generalize across sequences following the same repetition structure but comprising different images. These results suggest that prefrontal populations spontaneously encode rich internal models of visual sequences reflecting both content-specific and abstract information.


Assuntos
Macaca , Córtex Pré-Frontal , Animais , Córtex Pré-Frontal/fisiologia , Córtex Cerebral
6.
Cell Rep ; 43(3): 113847, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412098

RESUMO

The ability to compose successive words into a meaningful phrase is a characteristic feature of human cognition, yet its neural mechanisms remain incompletely understood. Here, we analyze the cortical mechanisms of semantic composition using magnetoencephalography (MEG) while participants read one-word, two-word, and five-word noun phrases and compared them with a subsequent image. Decoding of MEG signals revealed three processing stages. During phrase comprehension, the representation of individual words was sustained for a variable duration depending on phrasal context. During the delay period, the word code was replaced by a working-memory code whose activation increased with semantic complexity. Finally, the speed and accuracy of retrieval depended on semantic complexity and was faster for surface than for deep semantic properties. In conclusion, we propose that the brain initially encodes phrases using factorized dimensions for successive words but later compresses them in working memory and requires a period of decompression to access them.


Assuntos
Memória de Curto Prazo , Semântica , Humanos , Compreensão/fisiologia , Mapeamento Encefálico/métodos , Encéfalo/fisiologia
7.
Elife ; 122023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910588

RESUMO

According to the language-of-thought hypothesis, regular sequences are compressed in human memory using recursive loops akin to a mental program that predicts future items. We tested this theory by probing memory for 16-item sequences made of two sounds. We recorded brain activity with functional MRI and magneto-encephalography (MEG) while participants listened to a hierarchy of sequences of variable complexity, whose minimal description required transition probabilities, chunking, or nested structures. Occasional deviant sounds probed the participants' knowledge of the sequence. We predicted that task difficulty and brain activity would be proportional to the complexity derived from the minimal description length in our formal language. Furthermore, activity should increase with complexity for learned sequences, and decrease with complexity for deviants. These predictions were upheld in both fMRI and MEG, indicating that sequence predictions are highly dependent on sequence structure and become weaker and delayed as complexity increases. The proposed language recruited bilateral superior temporal, precentral, anterior intraparietal, and cerebellar cortices. These regions overlapped extensively with a localizer for mathematical calculation, and much less with spoken or written language processing. We propose that these areas collectively encode regular sequences as repetitions with variations and their recursive composition into nested structures.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Encéfalo/diagnóstico por imagem , Idioma , Aprendizagem , Memória
8.
Proc Biol Sci ; 290(2008): 20231665, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37788702

RESUMO

Does word flickering facilitate reading? Despite a lack of scientific evidence, flickering glasses and lamps for dyslexia are being marketed in various countries. We conducted four experiments to assess their efficacy. Two experiments involved a computerized lexical decision task with constant display or low-frequency flickering (10 or 15 Hz). Among 375 regular adult readers, flicker noticeably slowed down word recognition, while slightly biasing the decision towards pseudowords. No significant effect was observed in 20 dyslexic children. In 22 dyslexic children, we also evaluated the impact of the Lexilight lamp and Lexilens glasses, which operate at higher frequencies, on reading fluency, letter identification and mirror letter processing. No detectable impact was observed. Lastly, in two participants who claimed to benefit from flickering glasses, we orthogonally manipulated whether the glasses were actually on, and whether the participant thought they were on. Only a small placebo effect was noted in one participant. Our findings starkly contrast with marketing claims that these tools can help 90% of dyslexics, and emphasize the role of rigorous scientific research in empowering dyslexic individuals to make informed decisions.


Assuntos
Dislexia , Leitura , Adulto , Criança , Humanos
10.
Sci Rep ; 13(1): 10266, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355745

RESUMO

Data plots are widely used in science, journalism and politics, since they efficiently allow to depict a large amount of information. Graphicacy, the ability to understand graphs, has thus become a fundamental cultural skill comparable to literacy or numeracy. Here, we introduce a measure of intuitive graphicacy that assesses the perceptual ability to detect a trend in noisy scatterplots ("does this graph go up or down?"). In 3943 educated participants, responses vary as a sigmoid function of the t-value that a statistician would compute to detect a significant trend. We find a minimum level of core intuitive graphicacy even in unschooled participants living in remote Namibian villages (N = 87) and 6-year-old 1st-graders who never read a graph (N = 27). The sigmoid slope that we propose as a proxy of intuitive graphicacy increases with education and tightly correlates with statistical and mathematical knowledge, showing that experience contributes to refining graphical intuitions. Our tool, publicly available online, allows to quickly evaluate and formally quantify a perceptual building block of graphicacy.


Assuntos
Compreensão , Julgamento , Humanos , Matemática , Alfabetização , Intuição
11.
J Neurosci ; 43(29): 5350-5364, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37217308

RESUMO

A sentence is more than the sum of its words: its meaning depends on how they combine with one another. The brain mechanisms underlying such semantic composition remain poorly understood. To shed light on the neural vector code underlying semantic composition, we introduce two hypotheses: (1) the intrinsic dimensionality of the space of neural representations should increase as a sentence unfolds, paralleling the growing complexity of its semantic representation; and (2) this progressive integration should be reflected in ramping and sentence-final signals. To test these predictions, we designed a dataset of closely matched normal and jabberwocky sentences (composed of meaningless pseudo words) and displayed them to deep language models and to 11 human participants (5 men and 6 women) monitored with simultaneous MEG and intracranial EEG. In both deep language models and electrophysiological data, we found that representational dimensionality was higher for meaningful sentences than jabberwocky. Furthermore, multivariate decoding of normal versus jabberwocky confirmed three dynamic patterns: (1) a phasic pattern following each word, peaking in temporal and parietal areas; (2) a ramping pattern, characteristic of bilateral inferior and middle frontal gyri; and (3) a sentence-final pattern in left superior frontal gyrus and right orbitofrontal cortex. These results provide a first glimpse into the neural geometry of semantic integration and constrain the search for a neural code of linguistic composition.SIGNIFICANCE STATEMENT Starting from general linguistic concepts, we make two sets of predictions in neural signals evoked by reading multiword sentences. First, the intrinsic dimensionality of the representation should grow with additional meaningful words. Second, the neural dynamics should exhibit signatures of encoding, maintaining, and resolving semantic composition. We successfully validated these hypotheses in deep neural language models, artificial neural networks trained on text and performing very well on many natural language processing tasks. Then, using a unique combination of MEG and intracranial electrodes, we recorded high-resolution brain data from human participants while they read a controlled set of sentences. Time-resolved dimensionality analysis showed increasing dimensionality with meaning, and multivariate decoding allowed us to isolate the three dynamical patterns we had hypothesized.


Assuntos
Encéfalo , Idioma , Masculino , Humanos , Feminino , Encéfalo/fisiologia , Semântica , Linguística , Mapeamento Encefálico/métodos , Leitura , Imageamento por Ressonância Magnética/métodos
12.
Curr Biol ; 33(10): 1906-1915.e6, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37071994

RESUMO

The core knowledge hypothesis postulates that infants automatically analyze their environment along abstract dimensions, including numbers. According to this view, approximate numbers should be encoded quickly, pre-attentively, and in a supra-modal manner by the infant brain. Here, we directly tested this idea by submitting the neural responses of sleeping 3-month-old infants, measured with high-density electroencephalography (EEG), to decoders designed to disentangle numerical and non-numerical information. The results show the emergence, in approximately 400 ms, of a decodable number representation, independent of physical parameters, that separates auditory sequences of 4 vs. 12 tones and generalizes to visual arrays of 4 vs. 12 objects. Thus, the infant brain contains a number code that transcends sensory modality, sequential or simultaneous presentation, and arousal state.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Lactente , Encéfalo/fisiologia , Nível de Alerta
13.
Proc Natl Acad Sci U S A ; 120(17): e2300252120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068244

RESUMO

Reading a sentence entails integrating the meanings of individual words to infer more complex, higher-order meaning. This highly rapid and complex human behavior is known to engage the inferior frontal gyrus (IFG) and middle temporal gyrus (MTG) in the language-dominant hemisphere, yet whether there are distinct contributions of these regions to sentence reading is still unclear. To probe these neural spatiotemporal dynamics, we used direct intracranial recordings to measure neural activity while reading sentences, meaning-deficient Jabberwocky sentences, and lists of words or pseudowords. We isolated two functionally and spatiotemporally distinct frontotemporal networks, each sensitive to distinct aspects of word and sentence composition. The first distributed network engages the IFG and MTG, with IFG activity preceding MTG. Activity in this network ramps up over the duration of a sentence and is reduced or absent during Jabberwocky and word lists, implying its role in the derivation of sentence-level meaning. The second network engages the superior temporal gyrus and the IFG, with temporal responses leading those in frontal lobe, and shows greater activation for each word in a list than those in sentences, suggesting that sentential context enables greater efficiency in the lexical and/or phonological processing of individual words. These adjacent, yet spatiotemporally dissociable neural mechanisms for word- and sentence-level processes shed light on the richly layered semantic networks that enable us to fluently read. These results imply distributed, dynamic computation across the frontotemporal language network rather than a clear dichotomy between the contributions of frontal and temporal structures.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Idioma , Linguística , Lobo Frontal/fisiologia , Semântica
14.
Sci Adv ; 9(14): eadf6140, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37018408

RESUMO

In expert readers, a brain region known as the visual word form area (VWFA) is highly sensitive to written words, exhibiting a posterior-to-anterior gradient of increasing sensitivity to orthographic stimuli whose statistics match those of real words. Using high-resolution 7-tesla functional magnetic resonance imaging (fMRI), we ask whether, in bilingual readers, distinct cortical patches specialize for different languages. In 21 English-French bilinguals, unsmoothed 1.2-millimeters fMRI revealed that the VWFA is actually composed of several small cortical patches highly selective for reading, with a posterior-to-anterior word-similarity gradient, but with near-complete overlap between the two languages. In 10 English-Chinese bilinguals, however, while most word-specific patches exhibited similar reading specificity and word-similarity gradients for reading in Chinese and English, additional patches responded specifically to Chinese writing and, unexpectedly, to faces. Our results show that the acquisition of multiple writing systems can indeed tune the visual cortex differently in bilinguals, sometimes leading to the emergence of cortical patches specialized for a single language.


Assuntos
Idioma , Imageamento por Ressonância Magnética , Humanos , Encéfalo , Mapeamento Encefálico , Leitura
15.
PLoS One ; 18(2): e0268577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36763595

RESUMO

The relationship between conscious experience and brain activity has intrigued scientists and philosophers for centuries. In the last decades, several theories have suggested different accounts for these relationships. These theories have developed in parallel, with little to no cross-talk among them. To advance research on consciousness, we established an adversarial collaboration between proponents of two of the major theories in the field, Global Neuronal Workspace and Integrated Information Theory. Together, we devised and preregistered two experiments that test contrasting predictions of these theories concerning the location and timing of correlates of visual consciousness, which have been endorsed by the theories' proponents. Predicted outcomes should either support, refute, or challenge these theories. Six theory-impartial laboratories will follow the study protocol specified here, using three complementary methods: Functional Magnetic Resonance Imaging (fMRI), Magneto-Electroencephalography (M-EEG), and intracranial electroencephalography (iEEG). The study protocol will include built-in replications, both between labs and within datasets. Through this ambitious undertaking, we hope to provide decisive evidence in favor or against the two theories and clarify the footprints of conscious visual perception in the human brain, while also providing an innovative model of large-scale, collaborative, and open science practice.


Assuntos
Estado de Consciência , Teoria da Informação , Humanos , Estado de Consciência/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Percepção Visual , Eletroencefalografia
16.
Proc Natl Acad Sci U S A ; 120(6): e2213430120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36730198

RESUMO

Many teaching websites, such as the Khan Academy, propose vivid videos illustrating a mathematical concept. Using functional magnetic resonance imaging, we asked whether watching such a video suffices to rapidly change the brain networks for mathematical knowledge. We capitalized on the finding that, when judging the truth of short spoken statements, distinct semantic regions activate depending on whether the statements bear on mathematical knowledge or on other domains of semantic knowledge. Here, participants answered such questions before and after watching a lively 5-min video, which taught them the rudiments of a new domain. During the video, a distinct math-responsive network, comprising anterior intraparietal and inferior temporal nodes, showed intersubject synchrony when viewing mathematics course rather than control courses in biology or law. However, this experience led to minimal subsequent changes in the activity of those domain-specific areas when answering questions on the same topics a few minutes later. All taught facts, whether mathematical or not, led to domain-general repetition enhancement, particularly prominent in the cuneus, posterior cingulate, and posterior parietal cortices. We conclude that short videos do not suffice to induce a meaningful lasting change in the brain's math-responsive network, but merely engage domain-general regions possibly involved in episodic short-term memory.


Assuntos
Encéfalo , Semântica , Humanos , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Lobo Parietal/fisiologia , Imageamento por Ressonância Magnética , Matemática
17.
J Exp Psychol Hum Percept Perform ; 49(1): 129-144, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36395054

RESUMO

According to a growing body of research, human adults are remarkably accurate at extracting intuitive statistics from graphs, such as finding the best-fitting regression line through a scatterplot. Here, we ask whether humans can also perform outlier rejection, a nontrivial statistical problem. In three experiments, we investigated human adults' capacity to evaluate the linear trend of a flashed scatterplot comprising 0-4 outlier datapoints. Experiment 1 showed that participants did not spontaneously reject outliers: when outliers were not mentioned, their presence biased the participants' trend judgments and regression line estimates. In Experiment 2, where participants were explicitly asked to exclude outliers, the outlier-induced bias was reduced but remained significant. In Experiment 3, where participants were asked to explicitly detect any outlier before adjusting their regression line, outlier detection was satisfactory, but the detected outliers continued to bias the regression responses, unless they were quite distant from the main regression line. We propose a simple model for outlier detection, based on the computation of a z-score that estimates how far a given datapoint is from the distribution of distances to the regression line, and we show that this model closely approximates human performance. Detection is not rejection, however, and our results suggest that humans can remain biased by outliers that they have detected. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Estatística como Assunto , Humanos
18.
Cogn Neuropsychol ; 40(7-8): 319-350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38831527

RESUMO

Reading is a complex process involving multiple stages. An impairment in any of these stages may cause distinct types of reading deficits- distinct types of dyslexia. We describe the Malabi, a screener to identify deficits in various orthographic, lexical, and sublexical components of the reading process in French. The Malabi utilizes stimuli that are sensitive to different forms of dyslexia, including "attentional dyslexia", as it is traditionally refered to, characterized by letter-to-word binding impairments leading to letter migrations between words (e.g., "bar cat" misread as "bat car"), and "letter-position dyslexia", resulting in letter transpositions within words (e.g., "destiny" misread as "density"). After collecting reading error norms from 138 French middle-school students, we analyzed error types of 16 students with developmental dyslexia. We identified three selective cases of attentional dyslexia and one case of letter-position dyslexia. Further tests confirmed our diagnosis and demonstrate, for the first time, how these dyslexias are manifested in French. These results underscore the significance of recognizing and discussing the existence of multiple dyslexias, both in research contexts when selecting participants for dyslexia studies, and in practical settings where educators and practitioners work with students to develop personalized support. The test and supporting materials are available on Open Science Framework (https://osf.io/3pgzb/).


Assuntos
Dislexia , Leitura , Humanos , Dislexia/diagnóstico , Dislexia/fisiopatologia , Feminino , Masculino , França , Criança , Adolescente , Testes Neuropsicológicos , Atenção/fisiologia
19.
Cogn Psychol ; 139: 101527, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36403385

RESUMO

In various cultures and at all spatial scales, humans produce a rich complexity of geometric shapes such as lines, circles or spirals. Here, we propose that humans possess a language of thought for geometric shapes that can produce line drawings as recursive combinations of a minimal set of geometric primitives. We present a programming language, similar to Logo, that combines discrete numbers and continuous integration to form higher-level structures based on repetition, concatenation and embedding, and we show that the simplest programs in this language generate the fundamental geometric shapes observed in human cultures. On the perceptual side, we propose that shape perception in humans involves searching for the shortest program that correctly draws the image (program induction). A consequence of this framework is that the mental difficulty of remembering a shape should depend on its minimum description length (MDL) in the proposed language. In two experiments, we show that encoding and processing of geometric shapes is well predicted by MDL. Furthermore, our hypotheses predict additive laws for the psychological complexity of repeated, concatenated or embedded shapes, which we confirm experimentally.


Assuntos
Idioma , Rememoração Mental , Humanos
20.
Trends Cogn Sci ; 26(9): 751-766, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35933289

RESUMO

Natural language is often seen as the single factor that explains the cognitive singularity of the human species. Instead, we propose that humans possess multiple internal languages of thought, akin to computer languages, which encode and compress structures in various domains (mathematics, music, shape…). These languages rely on cortical circuits distinct from classical language areas. Each is characterized by: (i) the discretization of a domain using a small set of symbols, and (ii) their recursive composition into mental programs that encode nested repetitions with variations. In various tasks of elementary shape or sequence perception, minimum description length in the proposed languages captures human behavior and brain activity, whereas non-human primate data are captured by simpler nonsymbolic models. Our research argues in favor of discrete symbolic models of human thought.


Assuntos
Idioma , Percepção , Humanos , Matemática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...