Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 816: 137474, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37690497

RESUMO

Studying brain functions and activity during gamma oscillations can be a challenge because it requires careful planning to create the necessary conditions for a controlled experiment. Such an experiment consists of placing the brain into a gamma state and investigating cognitive processing with a careful design. Cortical oscillations in the gamma frequency range (30-80 Hz) play an essential role in a variety of cognitive processes, including visual processing and cognition. The present study aims to investigate the effects of a visual stimulus on the primary visual cortex under gamma oscillations. Specifically, we sought to explore the behavior of gamma oscillations triggered by optogenetic stimulation in the II and IV layers of the visual cortex, both with and without concurrent visual stimulation. Our results show that optogenetic stimulation increases the power of gamma oscillation in both layers of the visual cortex. However, the combined stimuli resulted in a reduction of gamma power in layer II and an increase and reinforcement in gamma power in layer IV. Modelling the results with the Wilson-Cowan model suggests changes in the input of the excitatory population due to the combined stimuli. In addition, our analysis of the data using the Lempel-Ziv complexity method supports our interpretations from the modeling. Thus, our results suggest that optogenetic stimulation enhances low gamma power in both layers of the visual cortex, while simultaneous visual stimulation has differing effects on the two layers, reducing gamma power in layer II and increasing it in layer IV.


Assuntos
Optogenética , Córtex Visual , Estimulação Luminosa/métodos , Optogenética/métodos , Percepção Visual/fisiologia , Encéfalo , Córtex Visual/fisiologia , Ritmo Gama/fisiologia
2.
PLoS Comput Biol ; 19(2): e1010876, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36780564

RESUMO

Spiking model neurons can be set up to respond selectively to specific spatio-temporal spike patterns by optimization of their input weights. It is unknown, however, if existing synaptic plasticity mechanisms can achieve this temporal mode of neuronal coding and computation. Here it is shown that changes of synaptic efficacies which tend to balance excitatory and inhibitory synaptic inputs can make neurons sensitive to particular input spike patterns. Simulations demonstrate that a combination of Hebbian mechanisms, hetero-synaptic plasticity and synaptic scaling is sufficient for self-organizing sensitivity for spatio-temporal spike patterns that repeat in the input. In networks inclusion of hetero-synaptic plasticity that depends on the pre-synaptic neurons leads to specialization and faithful representation of pattern sequences by a group of target neurons. Pattern detection is robust against a range of distortions and noise. The proposed combination of Hebbian mechanisms, hetero-synaptic plasticity and synaptic scaling is found to protect the memories for specific patterns from being overwritten by ongoing learning during extended periods when the patterns are not present. This suggests a novel explanation for the long term robustness of memory traces despite ongoing activity with substantial synaptic plasticity. Taken together, our results promote the plausibility of precise temporal coding in the brain.


Assuntos
Aprendizagem , Neurônios , Neurônios/fisiologia , Aprendizagem/fisiologia , Encéfalo , Plasticidade Neuronal/fisiologia , Modelos Neurológicos , Sinapses/fisiologia
3.
Phys Rev E ; 102(5-1): 052202, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33327067

RESUMO

It is known that the leaky integrate-and-fire neural model shows a transition from irregular to synchronous firing by increasing the coupling between the neurons. However, a quantitative characterization of this order-disorder transition, that is, the determination of the order of transition and also the critical exponents in the case of continuous transition, is not entirely known. In this work, we consider a network of N excitatory neurons with local connections, residing on a square lattice with periodic boundary conditions. The cooperation between neurons K plays the role of the control parameter that generates criticality when the critical cooperation strength K_{c} is adopted. We introduce the population-averaged voltage (PAV) as a representative value of the network's cooperative activity. Then, we show that the coupling between the timing of spikes and the phase of temporal fluctuations of PAV defined as m resorts to identify a Kuramoto order parameter. By increasing K, we find a continuous transition from irregular spiking to a phase-locked state at the critical point K_{c}. We deploy the finite-size scaling analysis to calculate the critical exponents of this transition. To explore the formal indicator of criticality, we study the neuronal avalanches profile at this critical point and find a scaling behavior with the exponents in a fair agreement with the experimental values both in vivo and in vitro.

4.
Eur Phys J E Soft Matter ; 40(11): 101, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29188466

RESUMO

The model of the current paper is an extension of a previous publication, wherein we have used the leaky integrate-and-fire model on a regular lattice with periodic boundary conditions, and introduced the temporal complexity as a genuine signature of criticality. In that work, the power-law distribution of neural avalanches was a manifestation of supercriticality rather than criticality. Here, however, we show that the continuous solution of the model and replacing the stochastic noise with a Gaussian zero-mean noise leads to the coincidence of power-law display of temporal complexity, and spatiotemporal patterns of neural avalanches at the critical point. We conclude that the source of inconsistency may be a numerical artifact originated by the discrete description of the model which may imply a slow numerical convergence of the avalanche distribution compared to temporal complexity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...