Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Beilstein J Nanotechnol ; 15: 376-384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633765

RESUMO

Strain sensors are sensitive to mechanical deformations and enable the detection of strain also within integrated electronics. For flexible displays, the use of a seamlessly integrated strain sensor would be beneficial, and graphene is already in use as a transparent and flexible conductor. However, graphene intrinsically lacks a strong response, and only by engineering defects, such as grain boundaries, one can induce piezoresistivity. Nanocrystalline graphene (NCG), a derivative form of graphene, exhibits a high density of defects in the form of grain boundaries. It holds an advantage over graphene in easily achieving wafer-scale growth with controlled thickness. In this study, we explore the piezoresistivity in thin films of nanocrystalline graphite. Simultaneous measurements of sheet resistance and externally applied strain on NCG placed on polyethylene terephthalate (PET) substrates provide intriguing insights into the underlying mechanism. Raman measurements, in conjunction with strain applied to NCG grown on flexible glass, indicate that the strain is concentrated at the grain boundaries for smaller strain values. For larger strains, mechanisms such as grain rotation and the formation of nanocracks might contribute to the piezoresistive behavior in nanocrystalline graphene.

2.
ACS Nano ; 18(13): 9525-9534, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38513118

RESUMO

Single-photon sources are essential building blocks for the development of photonic quantum technology. Regarding potential practical application, an on-demand electrically driven quantum-light emitter on a chip is notably crucial for photonic integrated circuits. Here, we propose functionalized single-walled carbon nanotube field-effect transistors as a promising solid-state quantum-light source by demonstrating photon antibunching behavior via electrical excitation. The sp3 quantum defects were formed on the surface of (7, 5) carbon nanotubes by 3,5-dichlorophenyl functionalization, and individual carbon nanotubes were wired to graphene electrode pairs. Filtered electroluminescent defect-state emission at 77 K was coupled into a Hanbury Brown and Twiss experiment setup, and single-photon emission was observed by performing second-order correlation function measurements. We discuss the dependence of the intensity correlation measurement on electrical power and emission wavelength, highlighting the challenges of performing such measurements while simultaneously analyzing acquired data. Our results indicate a route toward room-temperature electrically triggered single-photon emission.

3.
ACS Nano ; 16(8): 11742-11754, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35732039

RESUMO

Individual single-walled carbon nanotubes with covalent sidewall defects have emerged as a class of photon sources whose photoluminescence spectra can be tailored by the carbon nanotube chirality and the attached functional group/molecule. Here we present electroluminescence spectroscopy data from single-tube devices based on (7, 5) carbon nanotubes, functionalized with dichlorobenzene molecules, and wired to graphene electrodes. We observe electrically generated, defect-induced emissions that are controllable by electrostatic gating and strongly red-shifted compared to emissions from pristine nanotubes. The defect-induced emissions are assigned to excitonic and trionic recombination processes by correlating electroluminescence excitation maps with electrical transport and photoluminescence data. At cryogenic conditions, additional gate-dependent emission lines appear, which are assigned to phonon-assisted hot-exciton electroluminescence from quasi-levels. Similar results were obtained with functionalized (6, 5) nanotubes. We also compare functionalized (7, 5) electroluminescence data with photoluminescence of pristine and functionalized (7, 5) nanotubes redox-doped using gold(III) chloride solution. This work shows that electroluminescence excitation is selective toward neutral defect-state configurations with the lowest transition energy, which in combination with gate-control over neutral versus charged defect-state emission leads to high spectral purity.

4.
ACS Appl Mater Interfaces ; 14(7): 9525-9534, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138788

RESUMO

Graphene, a zero-gap semiconductor, absorbs 2.3% of incident photons in a wide wavelength range as a free-standing monolayer, whereas 50% is expected for ∼90 layers. Adjusting the layer number allows the tailoring of the photoresponse; however, controlling the thickness of multilayer graphene remains challenging on the wafer scale. Nanocrystalline graphene or graphite (NCG) can instead be grown with controlled thickness. We have fabricated photodetectors from NCG that are spectrally flat in the near-infrared to short-wavelength infrared region by tailoring the layer thicknesses. Transfer matrix simulations were used to determine the NCG thickness for maximum light absorption in the NCG layer on a silicon substrate. The extrinsic and intrinsic photoresponse was determined from 1100 to 2100 nm using chromatic aberration-corrected photocurrent spectroscopy. Diffraction-limited hyperspectral photocurrent imaging shows that the biased photoresponse is unipolar and homogeneous across the device area, whereas the short-circuit photoresponse gives rise to positive and negative photocurrents at the electrodes. The intrinsic photoresponses are wavelength-independent, indicative of bolometric and electrothermal photodetection.

5.
Adv Mater ; 33(43): e2103316, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34496451

RESUMO

Graphene is inherently sensitive to vicinal dielectrics and local charge distributions, a property that can be probed by the position of the Dirac point in graphene field-effect transistors. Exploiting this as a useful sensing principle requires selectivity; however, graphene itself exhibits no molecule-specific interaction. Complementarily, metal-organic frameworks can be tailored to selective adsorption of specific molecular species. Here, a selective ethanol sensor is demonstrated by growing a surface-mounted metal-organic framework (SURMOF) directly onto graphene field-effect transistors (GFETs). Unprecedented shifts of the Dirac point, as large as 15 V, are observed when the SURMOF/GFET is exposed to ethanol, while a vanishingly small response is observed for isopropanol, methanol, and other constituents of the air, including water. The synthesis and conditioning of the hybrid materials sensor with its functional characteristics are described and a model is proposed to explain the origin, magnitude, and direction of the Dirac point voltage shift. Tailoring multiple SURMOFs to adsorb specific gases on an array of such devices thus generates a versatile, selective, and highly sensitive platform for sensing applications.

6.
Nano Lett ; 20(5): 3411-3419, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32233490

RESUMO

Electrochemical exfoliation is one of the most promising methods for scalable production of graphene. However, limited understanding of its Raman spectrum as well as lack of measurement standards for graphene strongly limit its industrial applications. In this work, we show a systematic study of the Raman spectrum of electrochemically exfoliated graphene, produced using different electrolytes and types of solvents in varying amounts. We demonstrate that no information on the thickness can be extracted from the shape of the 2D peak as this type of graphene is defective. Furthermore, the number of defects and the uniformity of the samples strongly depend on the experimental conditions, including postprocessing. Under specific conditions, the formation of short conductive trans-polyacetylene chains has been observed. Our Raman analysis provides guidance for the community on how to get information on defects coming from electrolyte, temperature, and other experimental conditions, by making Raman spectroscopy a powerful metrology tool.

7.
ACS Nano ; 14(3): 2709-2717, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-31920075

RESUMO

Single-walled carbon nanotubes as emerging quantum-light sources may fill a technological gap in silicon photonics due to their potential use as near-infrared, electrically driven, classical or nonclassical emitters. Unlike in photoluminescence, where nanotubes are excited with light, electrical excitation of single tubes is challenging and heavily influenced by device fabrication, architecture, and biasing conditions. Here we present electroluminescence spectroscopy data of ultra-short-channel devices made from (9,8) carbon nanotubes emitting in the telecom band. Emissions are stable under current biasing, and no enhanced suppression is observed down to 10 nm gap size. Low-temperature electroluminescence spectroscopy data also reported exhibit cold emission and line widths down to 2 meV at 4 K. Electroluminescence excitation maps give evidence that carrier recombination is the mechanism for light generation in short channels. Excitonic and trionic emissions can be switched on and off by gate voltage, and corresponding emission efficiency maps were compiled. Insights are gained into the influence of acoustic phonons on the line width, absence of intensity saturation and exciton-exciton annihilation, environmental effects such as dielectric screening and strain on the emission wavelength, and conditions to suppress hysteresis and establish optimum operation conditions.

8.
ACS Nano ; 14(1): 948-963, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31742998

RESUMO

The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube species of ∼1.41 nm diameter are isolated, including both metallics and semiconductors. We characterize these populations by absorbance spectroscopy, circular dichroism spectroscopy, resonance Raman spectroscopy, and photoluminescence mapping, revealing and substantiating mod-dependent optical dependencies. Using knowledge of the competitive adsorption of surfactants to the SWCNTs that controls partitioning within the ATPE separation, we describe an advanced acid addition methodology that enables the fine control of the separation of these select nanotubes. Furthermore, we show that endohedral filling is a previously unrecognized but important factor to ensure a homogeneous starting material and further enhance the separation yield, with the best results for alkane-filled SWCNTs, followed by empty SWCNTs, with the intrinsic inhomogeneity of water-filled SWCNTs causing them to be worse for separations. Lastly, we demonstrate the potential use of these nanotubes in field-effect transistors.

9.
Nanoscale Adv ; 1(7): 2485-2494, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-36132723

RESUMO

During high temperature pyrolysis of polymer thin films, nanocrystalline graphene with a high defect density, active edges and various nanostructures is formed. The catalyst-free synthesis is based on the temperature assisted transformation of a polymer precursor. The processing conditions have a strong influence on the final thin film properties. However, the precise elemental processes that govern the polymer pyrolysis at high temperatures are unknown. By means of time resolved in situ transmission electron microscopy investigations we reveal that the reactivity of defects and unsaturated edges plays an integral role in the structural dynamics. Both mobile and stationary structures with varying size, shape and dynamics have been observed. During high temperature experiments, small graphene fragments (nanoflakes) are highly unstable and tend to lose atoms or small groups of atoms, while adjacent larger domains grow by addition of atoms, indicating an Ostwald-like ripening in these 2D materials, besides the mechanism of lateral merging of nanoflakes with edges. These processes are also observed in low-dose experiments with negligible electron beam influence. Based on energy barrier calculations, we propose several inherent temperature-driven mechanisms of atom rearrangement, partially involving catalyzing unsaturated sites. Our results show that the fundamentally different high temperature behavior and stability of nanocrystalline graphene in contrast to pristine graphene is caused by its reactive nature. The detailed analysis of the observed dynamics provides a pioneering overview of the relevant processes during ncg heating.

10.
Nanoscale ; 10(25): 12156-12162, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29916516

RESUMO

Graphitization of a polymer layer provides a convenient route to synthesize nanocrystalline graphene on dielectric surfaces. The transparent and conducting wafer scale material is of interest as a membrane and a coating, and for the generation and detection of light, or strain sensing. In this work, we study the formation of nanocrystalline graphene on germanium, a surface which promotes the CVD synthesis of monocrystalline graphene. The surprising result that we obtained through graphitization is the formation of cavities in germanium, over which nanocrystalline graphene is suspended. Depending on the crystallographic orientation of the germanium surface, either trenches in (110)-Ge or pits in (111)-Ge are formed, and their dimensions depend on the graphitization temperature. Using Raman spatial imaging, we can show that nanocrystalline graphene is formed across the entire wafer in spite of the cavity formation. Interestingly, the Raman intensity is suppressed when the material is supported by germanium and is enhanced when the material is suspended. Through simulations, we can show that these effects are induced by the high refractive index of germanium and by interferences of the light field depending on the spacing between graphene and germanium. Using atomic force and scanning electron microscopy, we determined that ripples in the suspended material are induced by the mismatch of thermal expansion coefficients. Our results provide a new route to lithography-free fabrication of suspended membranes.

11.
Nanotechnology ; 29(23): 235205, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29553481

RESUMO

Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV-visible light and UV-laser), we demonstrate facile fabrication of high performance In2O3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.

12.
Nanoscale ; 9(35): 12835-12842, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28799608

RESUMO

Graphitization of polymers is an effective way to synthesize nanocrystalline graphene on different substrates with tunable shape, thickness and properties. The catalyst free synthesis results in crystallite sizes on the order of a few nanometers, significantly smaller than commonly prepared polycrystalline graphene. Even though this method provides the flexibility of graphitizing polymer films on different substrates, substrate free graphitization of freestanding polymer layers has not been studied yet. We report for the first time the thermally induced graphitization and domain growth of free-standing nanocrystalline graphene thin films using in situ TEM techniques. High resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and electron energy loss spectroscopy (EELS) techniques were used to analyze the graphitization and the evolution of nanocrystalline domains at different temperatures by characterizing the crystallinity and domain size, further supported by ex situ Raman spectroscopy. The graphitization was comparable to the substrate supported heating and the temperature dependence of graphitization was analyzed. In addition, the in situ analysis of the graphitization enabled direct imaging of some of the growth processes taking place at different temperatures.

13.
Nanoscale ; 9(31): 11205-11213, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28749520

RESUMO

Monochiral (7,5) single walled carbon nanotubes (SWCNTs) are integrated into a field effect transistor device in which the built-in electric field at the nanotube/metal contact allows for exciton separation under illumination. Variable wavelength spectroscopy and 2D surface mapping of devices consisting of 10-20 nanotubes are performed in the visible region and a strong correlation between the nanotube's second optical transition (S22) and the photocurrent is found. After integration, the SWCNTs are non-covalently modified with three different fluorescent dye molecules with off-resonant absorption maxima at 532 nm, 565 nm, and 610 nm. The dyes extend the absorption properties of the nanotube and contribute to the photocurrent. This approach holds promise for the development of photo-detectors and for applications in photovoltaics and biosensing.

14.
Adv Mater ; 29(4)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27859773

RESUMO

A printed vertical field-effect transistor is demonstrated, which decouples critical device dimensions from printing resolution. A printed mesoporous semiconductor layer, sandwiched between vertically stacked drive electrodes, provides <50 nm channel lengths. A polymer-electrolyte-based gate insulator infiltrates the percolating pores of the mesoporous channel to accumulate charge carriers at every semiconductor domain, thereby, resulting in an unprecedented current density of MA cm-2 .

15.
Nanotechnology ; 27(41): 415205, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27609560

RESUMO

Oxide semiconductors are considered to be one of the forefront candidates for the new generation, high-performance electronics. However, one of the major limitations for oxide electronics is the scarcity of an equally good hole-conducting semiconductor, which can provide identical performance for the p-type metal oxide semiconductor field-effect transistors as compared to their electron conducting counterparts. In this quest, here we present a bulk synthesis method for single crystalline cuprous oxide (Cu2O) nanowires, their chemical and morphological characterization and suitability as active channel material in electrolyte-gated, low-power, field-effect transistors (FETs) for portable and flexible logic circuits. The bulk synthesis method used in the present study includes two steps: namely hydrothermal synthesis of the nanowires and the removal of the surface organic contaminants. The surface treated nanowires are then dispersed on a receiver substrate where the passive electrodes are structured, followed by printing of a composite solid polymer electrolyte (CSPE), chosen as the gate insulator. The characteristic electrical properties of individual nanowire FETs are found to be quite interesting including accumulation-mode operation and field-effect mobility of 0.15 cm(2) V(-1) s(-1).

16.
Nanotechnology ; 26(32): 325202, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26207014

RESUMO

Graphene is of increasing interest for optoelectronic applications exploiting light detection, light emission and light modulation. Intrinsically, the light-matter interaction in graphene is of a broadband type. However, by integrating graphene into optical micro-cavities narrow-band light emitters and detectors have also been demonstrated. These devices benefit from the transparency, conductivity and processability of the atomically thin material. To this end, we explore in this work the feasibility of replacing graphene with nanocrystalline graphene, a material which can be grown on dielectric surfaces without catalyst by graphitization of polymeric films. We have studied the formation of nanocrystalline graphene on various substrates and under different graphitization conditions. The samples were characterized by resistance, optical transmission, Raman and x-ray photoelectron spectroscopy, atomic force microscopy and electron microscopy measurements. The conducting and transparent wafer-scale material with nanometer grain size was also patterned and integrated into devices for studying light-matter interaction. The measurements show that nanocrystalline graphene can be exploited as an incandescent emitter and bolometric detector similar to crystalline graphene. Moreover the material exhibits piezoresistive behavior which makes nanocrystalline graphene interesting for transparent strain sensors.

17.
Small ; 11(29): 3591-6, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25867029

RESUMO

Complementary metal oxide semiconductor (CMOS) technology with high transconductance and signal gain is mandatory for practicable digital/analog logic electronics. However, high performance all-oxide CMOS logics are scarcely reported in the literature; specifically, not at all for solution-processed/printed transistors. As a major step toward solution-processed all-oxide electronics, here it is shown that using a highly efficient electrolyte-gating approach one can obtain printed and low-voltage operated oxide CMOS logics with high signal gain (≈21 at a supply voltage of only 1.5 V) and low static power dissipation.

18.
ACS Nano ; 9(4): 3849-57, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25758564

RESUMO

In this work, we demonstrate the application of the gel permeation technique to the sorting of double-walled carbon nanotubes (DWCNTs) according to their outer wall electronic type. Our method uses Sephacryl S-200 gel and yields sorted fractions of DWCNTs with impurities removed and highly enriched in nanotubes with either metallic (M) or semiconducting (S) outer walls. The prepared fractions are fully characterized using optical absorption spectroscopy, transmission electron microscopy, and atomic force microscopy, and the entire procedure is monitored in real time using process Raman analysis. The sorted DWCNTs are then integrated into single nanotube field effect transistors, allowing detailed electronic measurement of the transconductance properties of the four unique inner@outer wall combinations of S@S, S@M, M@S, and M@M.

19.
ACS Nano ; 9(3): 3075-83, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25693653

RESUMO

Critical prerequisites for solution-processed/printed field-effect transistors (FETs) and logics are excellent electrical performance including high charge carrier mobility, reliability, high environmental stability and low/preferably room temperature processing. Oxide semiconductors can often fulfill all the above criteria, sometimes even with better promise than their organic counterparts, except for their high process temperature requirement. The need for high annealing/curing temperatures renders oxide FETs rather incompatible to inexpensive, flexible substrates, which are commonly used for high-throughput and roll-to-roll additive manufacturing techniques, such as printing. To overcome this serious limitation, here we demonstrate an alternative approach that enables completely room-temperature processing of printed oxide FETs with device mobility as large as 12.5 cm(2)/(V s). The key aspect of the present concept is a chemically controlled curing process of the printed nanoparticle ink that provides surprisingly dense thin films and excellent interparticle electrical contacts. In order to demonstrate the versatility of this approach, both n-type (In2O3) and p-type (Cu2O) oxide semiconductor nanoparticle dispersions are prepared to fabricate, inkjet printed and completely room temperature processed, all-oxide complementary metal oxide semiconductor (CMOS) invertors that can display significant signal gain (∼18) at a supply voltage of only 1.5 V.

20.
ACS Nano ; 8(9): 9324-31, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25117458

RESUMO

Variable-wavelength photocurrent microscopy and photocurrent spectroscopy are used to study the photoresponse of (n, m) sorted single-walled carbon nanotube (SWNT) devices. The measurements of (n, m) pure SWCNT devices demonstrate the ability to study the wavelength-dependent photoresponse in situ in a device configuration and deliver photocurrent spectra that reflect the population of the source material. Furthermore, we show that it is possible to map and determine the chirality population within a working optoelectronic SWCNT device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...