Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202410169, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961560

RESUMO

The cytoskeleton is essential for spatial and temporal organisation of a wide range of cellular and tissue-level processes, such as proliferation, signalling, cargo transport, migration, morphogenesis, and neuronal development. Cytoskeleton research aims to study these processes by imaging, or by locally manipulating, the dynamics and organisation of cytoskeletal proteins with high spatiotemporal resolution: which matches the capabilities of optical methods. To date, no photoresponsive microtubule-stabilising tool has united all the features needed for a practical high-precision reagent: a low potency and biochemically stable non-illuminated state; then an efficient, rapid, and clean photoresponse that generates a high potency illuminated state; plus good solubility at suitable working concentrations; and efficient synthetic access. We now present CouEpo, a photocaged epothilone microtubule-stabilising reagent that combines these needs. Its potency increases approximately 100-fold upon violet/blue irradiation to reach low-nanomolar values, allowing efficient photocontrol of microtubule dynamics in live cells, and even the generation of cellular asymmetries in microtubule architecture and cell dynamics. CouEpo is thus a high-performance tool compound that can support high-precision research into many microtubule-associated processes, from biophysics to transport, cell motility, and neuronal physiology.

2.
Mol Biol Cell ; 35(1): br1, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910204

RESUMO

Fibroblasts migrate discontinuously by generating transient leading-edge protrusions and irregular, abrupt retractions of a narrow trailing edge. In contrast, keratinocytes migrate persistently and directionally via a single, stable, broad protrusion paired with a stable trailing-edge. The Rho GTPases Rac1, Cdc42 and RhoA are key regulators of cell protrusions and retractions. However, how these molecules mediate cell-type specific migration modes is still poorly understood. In fibroblasts, all three Rho proteins are active at the leading edge, suggesting short-range coordination of protrusive Rac1 and Cdc42 signals with RhoA retraction signals. Here, we show that Cdc42 was surprisingly active in the trailing-edge of migrating keratinocytes. Elevated Cdc42 activity colocalized with the effectors MRCK and N-WASP suggesting that Cdc42 controls both myosin activation and actin polymerization in the back. Indeed, Cdc42 was required to maintain the highly dynamic contractile acto-myosin retrograde flow at the trailing edge of keratinocytes, and its depletion induced ectopic protrusions in the back, leading to decreased migration directionality. These findings suggest that Cdc42 is required to stabilize the dynamic cytoskeletal polarization in keratinocytes, to enable persistent, directional migration.


Assuntos
Movimento Celular , Queratinócitos , Proteína cdc42 de Ligação ao GTP , Proteínas rho de Ligação ao GTP , Proteína cdc42 de Ligação ao GTP/metabolismo , Fibroblastos/metabolismo , Queratinócitos/fisiologia , Miosinas/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Humanos
3.
Nat Commun ; 14(1): 8356, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102112

RESUMO

Rho GTPases play a key role in the spatio-temporal coordination of cytoskeletal dynamics during cell migration. Here, we directly investigate crosstalk between the major Rho GTPases Rho, Rac and Cdc42 by combining rapid activity perturbation with activity measurements in mammalian cells. These studies reveal that Rac stimulates Rho activity. Direct measurement of spatio-temporal activity patterns show that Rac activity is tightly and precisely coupled to local cell protrusions, followed by Rho activation during retraction. Furthermore, we find that the Rho-activating Lbc-type GEFs Arhgef11 and Arhgef12 are enriched at transient cell protrusions and retractions and recruited to the plasma membrane by active Rac. In addition, their depletion reduces activity crosstalk, cell protrusion-retraction dynamics and migration distance and increases migration directionality. Thus, our study shows that Arhgef11 and Arhgef12 facilitate exploratory cell migration by coordinating cell protrusion and retraction by coupling the activity of the associated regulators Rac and Rho.


Assuntos
Tamanho Celular , Proteínas rho de Ligação ao GTP , Animais , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Citoesqueleto/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mamíferos/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
4.
Pflugers Arch ; 475(12): 1439-1452, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37851146

RESUMO

Cell contraction plays an important role in many physiological and pathophysiological processes. This includes functions in skeletal, heart, and smooth muscle cells, which lead to highly coordinated contractions of multicellular assemblies, and functions in non-muscle cells, which are often highly localized in subcellular regions and transient in time. While the regulatory processes that control cell contraction in muscle cells are well understood, much less is known about cell contraction in non-muscle cells. In this review, we focus on the mechanisms that control cell contraction in space and time in non-muscle cells, and how they can be investigated by light-based methods. The review particularly focusses on signal networks and cytoskeletal components that together control subcellular contraction patterns to perform functions on the level of cells and tissues, such as directional migration and multicellular rearrangements during development. Key features of light-based methods that enable highly local and fast perturbations are highlighted, and how experimental strategies can capitalize on these features to uncover causal relationships in the complex signal networks that control cell contraction.


Assuntos
Contração Muscular , Músculo Liso , Músculo Liso/metabolismo , Contração Muscular/fisiologia , Miócitos de Músculo Liso , Fosforilação
5.
PLoS One ; 17(6): e0267651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35731722

RESUMO

Misregulation and mutations of the transcription factor Nrf2 are involved in the development of a variety of human diseases. In this study, we employed the technology of stapled peptides to address a protein-DNA-complex and designed a set of Nrf2-based derivatives. Varying the length and position of the hydrocarbon staple, we chose the best peptide for further evaluation in both fixed and living cells. Peptide 4 revealed significant enrichment within the nucleus compared to its linear counterpart 5, indicating potent binding to DNA. Our studies suggest that these molecules offer an interesting strategy to target activated Nrf2 in cancer cells.


Assuntos
Fator 2 Relacionado a NF-E2 , Peptídeos , DNA , Humanos , Hidrocarbonetos/química , Fator 2 Relacionado a NF-E2/genética , Peptídeos/química
6.
Macromol Biosci ; 22(5): e2100453, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35152564

RESUMO

Cells sense both mechanical and chemical properties in their environment and respond to these inputs with altered phenotypes. Precise and selective experimental manipulations of these environmental cues require biocompatible synthetic materials, for which multiple properties can be fine-tuned independently from each other. For example, cells typically show critical thresholds for cell adhesion as a function of substrate parameters such as stiffness and the degree of functionalization. However, the choice of tailor-made, defined materials to produce such cell adhesion substrates is still very limited. Here, a platform of synthetic hydrogels based on well-defined thiolated copolymers is presented. Therefore, four disulfide crosslinked hydrogels of different composition by free radical polymerization are prepared. After cleavage with dithiothreitol, four soluble copolymers P1-P4 with 0-96% cationic monomer content are obtained. P1 and P4 are then combined with PEGDA3500 as a crosslinker, to fabricate 12 hydrogels with variable elasticity, ranging from 8.1 to 26.3 kPa and cationic group concentrations of up to 350 µmol cm-3 . Systematic analysis using COS7 cells shows that all of these hydrogels are nontoxic. However, successful cell adhesion requires both a minimal elasticity and a minimal cationic group concentration.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Materiais Biocompatíveis/farmacologia , Adesão Celular , Elasticidade , Hidrogéis/química , Polimerização
7.
Chembiochem ; 23(4): e202100582, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34897929

RESUMO

Cells process information via signal networks that typically involve multiple components which are interconnected by feedback loops. The combination of acute optogenetic perturbations and microscopy-based fluorescent response readouts enables the direct investigation of causal links in such networks. However, due to overlaps in spectra of photosensitive and fluorescent proteins, current approaches that combine these methods are limited. Here, we present an improved chemo-optogenetic approach that is based on switch-like perturbations induced by a single, local pulse of UV light. We show that this approach can be combined with parallel monitoring of multiple fluorescent readouts to directly uncover relations between signal network components. We present the application of this technique to directly investigate feedback-controlled regulation in the cell contraction signal network that includes GEF-H1, Rho and Myosin, and functional interactions of this network with tumor relevant RhoA G17 mutants.


Assuntos
Miosinas/genética , Optogenética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Proteína rhoA de Ligação ao GTP/genética , Linhagem Celular Tumoral , Humanos , Mutação , Raios Ultravioleta
8.
Cell Rep ; 33(9): 108467, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264629

RESUMO

Local cell contraction pulses play important roles in tissue and cell morphogenesis. Here, we improve a chemo-optogenetic approach and apply it to investigate the signal network that generates these pulses. We use these measurements to derive and parameterize a system of ordinary differential equations describing temporal signal network dynamics. Bifurcation analysis and numerical simulations predict a strong dependence of oscillatory system dynamics on the concentration of GEF-H1, an Lbc-type RhoGEF, which mediates the positive feedback amplification of Rho activity. This prediction is confirmed experimentally via optogenetic tuning of the effective GEF-H1 concentration in individual living cells. Numerical simulations show that pulse amplitude is most sensitive to external inputs into the myosin component at low GEF-H1 concentrations and that the spatial pulse width is dependent on GEF-H1 diffusion. Our study offers a theoretical framework to explain the emergence of local cell contraction pulses and their modulation by biochemical and mechanical signals.


Assuntos
Optogenética/métodos , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Humanos , Transdução de Sinais
9.
Angew Chem Int Ed Engl ; 57(37): 11993-11997, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30048030

RESUMO

The spatiotemporal dynamics of proteins or organelles plays a vital role in controlling diverse cellular processes. However, acute control of activity at distinct locations within a cell is challenging. A versatile multidirectional activity control (MAC) approach is presented, which employs a photoactivatable system that may be dimerized upon chemical inducement. The system comprises second-generation SLF*-TMP (S*T) and photocaged NvocTMP-Cl dimerizers; where, SLF*-TMP features a synthetic ligand of the FKBP(F36V) binding protein, Nvoc is a caging group, and TMP is the antibiotic trimethoprim. Two MAC strategies are demonstrated to spatiotemporally control cellular signaling and intracellular cargo transport. The novel platform enables tunable, reversible, and rapid control of activity at multiple compartments in living cells.


Assuntos
Optogenética/métodos , Proteínas de Ligação a Tacrolimo/química , Trimetoprima/química , Dimerização , Células HeLa , Humanos , Ligantes , Luz , Microscopia Confocal , Peroxissomos/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Trimetoprima/metabolismo , Proteínas rac1 de Ligação ao GTP/química , Proteínas rac1 de Ligação ao GTP/metabolismo
10.
Biol Chem ; 399(8): 809-819, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29664730

RESUMO

Cells need to process multifaceted external cues to steer their dynamic behavior. To efficiently perform this task, cells implement several exploratory mechanisms to actively sample their environment. In particular, cells can use exploratory actin-based cell protrusions and contractions to engage and squeeze the environment and to actively probe its chemical and mechanical properties. Multiple excitable signal networks were identified that can generate local activity pulses to control these exploratory processes. Such excitable signal networks offer particularly efficient mechanisms to process chemical or mechanical signals to steer dynamic cell behavior, such as directional migration, tissue morphogenesis and cell fate decisions.


Assuntos
Movimento Celular , Transdução de Sinais , Animais , Humanos
11.
J Cell Biol ; 216(12): 4271-4285, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29055010

RESUMO

Rho GTPase-based signaling networks control cellular dynamics by coordinating protrusions and retractions in space and time. Here, we reveal a signaling network that generates pulses and propagating waves of cell contractions. These dynamic patterns emerge via self-organization from an activator-inhibitor network, in which the small GTPase Rho amplifies its activity by recruiting its activator, the guanine nucleotide exchange factor GEF-H1. Rho also inhibits itself by local recruitment of actomyosin and the associated RhoGAP Myo9b. This network structure enables spontaneous, self-limiting patterns of subcellular contractility that can explore mechanical cues in the extracellular environment. Indeed, actomyosin pulse frequency in cells is altered by matrix elasticity, showing that coupling of contractility pulses to environmental deformations modulates network dynamics. Thus, our study reveals a mechanism that integrates intracellular biochemical and extracellular mechanical signals into subcellular activity patterns to control cellular contractility dynamics.


Assuntos
Citoesqueleto de Actina/metabolismo , Mecanotransdução Celular , Microtúbulos/metabolismo , Miosinas/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actomiosina/genética , Actomiosina/metabolismo , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Células HeLa , Humanos , Microtúbulos/ultraestrutura , Miosinas/genética , Osteoblastos , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteínas rho de Ligação ao GTP/genética
12.
ACS Chem Biol ; 12(9): 2231-2239, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28806053

RESUMO

To orchestrate the function and development of multicellular organisms, cells integrate intra- and extracellular information. This information is processed via signal networks in space and time, steering dynamic changes in cellular structure and function. Defects in those signal networks can lead to developmental disorders or cancer. However, experimental analysis of signal networks is challenging as their state changes dynamically and differs between individual cells. Thus, causal relationships between network components are blurred if lysates from large cell populations are analyzed. To directly study causal relationships, perturbations that target specific components have to be combined with measurements of cellular responses within individual cells. However, using standard single-cell techniques, the number of signal activities that can be monitored simultaneously is limited. Furthermore, diffusion of signal network components limits the spatial precision of perturbations, which blurs the analysis of spatiotemporal processing in signal networks. Hybrid strategies based on optogenetics, surface patterning, chemical tools, and protein design can overcome those limitations and thereby sharpen our view into the dynamic spatiotemporal state of signal networks and enable unique insights into the mechanisms that control cellular function in space and time.


Assuntos
Proteínas/metabolismo , Transdução de Sinais , Animais , Técnicas Biossensoriais/métodos , Humanos , Optogenética/métodos , Proteínas/análise , Proteínas/genética
13.
Angew Chem Int Ed Engl ; 56(21): 5916-5920, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28370940

RESUMO

Acute subcellular protein targeting is a powerful tool to study biological networks. However, signaling at the plasma membrane is highly dynamic, making it difficult to study in space and time. In particular, sustained local control of molecular function is challenging owing to the lateral diffusion of plasma membrane targeted molecules. Herein we present "molecular activity painting" (MAP), a novel technology which combines photoactivatable chemically induced dimerization (pCID) with immobilized artificial receptors. The immobilization of artificial receptors by surface-immobilized antibodies blocks lateral diffusion, enabling rapid and stable "painting" of signaling molecules and their activity at the plasma membrane with micrometer precision. Using this method, we show that painting of the RhoA-myosin activator GEF-H1 induces patterned acto-myosin contraction inside living cells.


Assuntos
Membrana Celular/química , Proteínas de Ligação a DNA , Invenções , Luz , Fatores de Transcrição , Células Cultivadas , Proteínas de Ligação a DNA/química , Dimerização , Invenções/tendências , Fatores de Transcrição/química
14.
Chemistry ; 21(14): 5311-6, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25694199

RESUMO

Macrocyclic natural products (NPs) and analogues thereof often show high affinity, selectivity, and metabolic stability, and methods for the synthesis of NP-like macrocycle collections are of major current interest. We report an efficient solid-phase/cyclorelease method for the synthesis of a collection of macrocyclic depsipeptides with bipartite peptide/polyketide structure inspired by the very potent F-actin stabilizing depsipeptides of the jasplakinolide/geodiamolide class. The method includes the assembly of an acyclic precursor chain on a polymeric carrier, terminated by olefins that constitute complementary fragments of the polyketide section and cyclization by means of a relay-ring-closing metathesis (RRCM). The method was validated in the first total synthesis of the actin-stabilizing cyclodepsipeptide seragamide A and the synthesis of a collection of structurally diverse bipartite depsipeptides.


Assuntos
Produtos Biológicos/síntese química , Depsipeptídeos/síntese química , Produtos Biológicos/química , Ciclização , Depsipeptídeos/química , Técnicas de Síntese em Fase Sólida
15.
Angew Chem Int Ed Engl ; 53(38): 10049-55, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25065762

RESUMO

Chemically induced dimerization (CID) has proven to be a powerful tool for modulating protein interactions. However, the traditional dimerizer rapamycin has limitations in certain in vivo applications because of its slow reversibility and its affinity for endogenous proteins. Described herein is a bioorthogonal system for rapidly reversible CID. A novel dimerizer with synthetic ligand of FKBP' (SLF') linked to trimethoprim (TMP). The SLF' moiety binds to the F36V mutant of FK506-binding protein (FKBP) and the TMP moiety binds to E. coli dihydrofolate reductase (eDHFR). SLF'-TMP-induced heterodimerization of FKBP(F36V) and eDHFR with a dissociation constant of 0.12 µM. Addition of TMP alone was sufficient to rapidly disrupt this heterodimerization. Two examples are presented to demonstrate that this system is an invaluable tool, which can be widely used to rapidly and reversibly control protein function in vivo.


Assuntos
Escherichia coli/citologia , Escherichia coli/enzimologia , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas de Ligação a Tacrolimo/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Dimerização , Células HeLa , Humanos , Viabilidade Microbiana , Bibliotecas de Moléculas Pequenas/química
16.
Bioarchitecture ; 4(2): 75-80, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24847718

RESUMO

Self-organization of dynamic microtubules via interactions with associated motors plays a critical role in spindle formation. The microtubule-based mechanisms underlying other aspects of cellular morphogenesis, such as the formation and development of protrusions from neuronal cells is less well understood. In a recent study, we investigated the molecular mechanism that underlies the massive reorganization of microtubules induced in non-neuronal cells by expression of the neuronal microtubule stabilizer MAP2c. In that study we directly observed cortical dynein complexes and how they affect the dynamic behavior of motile microtubules in living cells. We found that stationary dynein complexes transiently associate with motile microtubules near the cell cortex and that their rapid turnover facilitates efficient microtubule transport. Here, we discuss our findings in the larger context of cellular morphogenesis with specific focus on self-organizing principles from which cellular shape patterns such as the thin protrusions of neurons can emerge.


Assuntos
Dineínas/metabolismo , Microtúbulos/metabolismo , Animais
17.
Small ; 10(14): 2870-6, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24678019

RESUMO

The construction and operation of a low-cost plotter for fabrication of microarrays for multiplexed single-cell analyses is reported. The printing head consists of polymeric pyramidal pens mounted on a rotation stage installed on an aluminium frame. This construction enables printing of microarrays onto glass substrates mounted on a tilt stage, controlled by a Lab-View operated user interface. The plotter can be assembled by typical academic workshops from components of less than 15,000 Euro. The functionality of the instrument is demonstrated by printing DNA microarrays on the area of 0.5 cm2 using up to three different oligonucleotides. Typical feature sizes are 5 µm diameter with a pitch of 15 µm, leading to densities of up to 10(4)-10(5) spots/mm2. The fabricated DNA microarrays are used to produce sub-cellular scale arrays of bioactive epidermal growth factor peptides by means of DNA-directed immobilization. The suitability of these biochips for cell biological studies is demonstrated by specific recruitment, concentration, and activation of EGF receptors within the plasma membrane of adherent living cells. This work illustrates that the presented plotter gives access to bio-functionalized arrays usable for fundamental research in cell biology, such as the manipulation of signal pathways in living cells at subcellular resolution.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Análise de Célula Única/instrumentação , Análise Serial de Tecidos/instrumentação , Custos e Análise de Custo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Humanos , Células MCF-7 , Técnicas Analíticas Microfluídicas/economia , Técnicas Analíticas Microfluídicas/instrumentação , Análise de Sequência com Séries de Oligonucleotídeos/economia , Impressão/instrumentação , Análise de Célula Única/economia , Análise Serial de Tecidos/economia , Interface Usuário-Computador
18.
J Cell Sci ; 127(Pt 7): 1379-93, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24481812

RESUMO

The formin FHOD1 (formin homology 2 domain containing protein 1) can act as a capping and bundling protein in vitro. In cells, active FHOD1 stimulates the formation of ventral stress fibers. However, the cellular mechanisms by which this phenotype is produced and the physiological relevance of FHOD1 function are not currently understood. Here, we first show that FHOD1 controls the formation of two distinct stress fiber precursors differentially. On the one hand, it inhibits dorsal fiber growth, which requires the polymerization of parallel bundles of long actin filaments. On the other hand, it stimulates transverse arcs that are formed by the fusion of short antiparallel actin filaments. This combined action is crucial for the maturation of stress fibers and their spatio-temporal organization, and a lack of FHOD1 function perturbs dynamic cell behavior during cell migration. Furthermore, we show that the GTPase-binding and formin homology 3 domains (GBD and FH3) are responsible for stress fiber association and colocalization with myosin. Surprisingly, a version of FHOD1 that lacks these domains nevertheless retains its full capacity to stimulate arc and ventral stress fiber formation. Based on our findings, we propose a mechanism in which FHOD1 promotes the formation of short actin filaments and transiently associates with transverse arcs, thus providing tight temporal and spatial control of the formation and turnover of transverse arcs into mature ventral stress fibers during dynamic cell behavior.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas Fetais/metabolismo , Miosinas/metabolismo , Proteínas Nucleares/metabolismo , Fibras de Estresse/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Forminas , Humanos , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Estrutura Terciária de Proteína
19.
Mol Biol Cell ; 25(1): 95-106, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24173713

RESUMO

Microtubules are under the influence of forces mediated by cytoplasmic dynein motors associated with the cell cortex. If such microtubules are free to move, they are rapidly transported inside cells. Here we directly observe fluorescent protein-labeled cortical dynein speckles and motile microtubules. We find that several dynein complex subunits, including the heavy chain, the intermediate chain, and the associated dynactin subunit Dctn1 (also known as p150glued) form spatially resolved, dynamic speckles at the cell cortex, which are preferentially associated with microtubules. Measurements of bleaching and dissociation kinetics at the cell cortex reveal that these speckles often contain multiple labeled dynein heavy-chain molecules and turn over rapidly within seconds. The dynamic behavior of microtubules, such as directional movement, bending, or rotation, is influenced by association with dynein speckles, suggesting a direct physical and functional interaction. Our results support a model in which rapid turnover of cell cortex-associated dynein complexes facilitates their search to efficiently capture and push microtubules directionally with leading plus ends.


Assuntos
Dineínas/metabolismo , Microtúbulos/metabolismo , Animais , Células COS , Chlorocebus aethiops , Camundongos , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Análise de Célula Única , Processos Estocásticos , Imagem com Lapso de Tempo
20.
PLoS One ; 8(11): e79796, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260302

RESUMO

The first morphological change after neuronal differentiation is the microtubule-dependent initiation of thin cell protrusions called neurites. Here we performed a siRNA-based morphometric screen in P19 stem cells to evaluate the role of 408 microtubule-regulating genes during this early neuromorphogenesis step. This screen uncovered several novel regulatory factors, including specific complex subunits of the microtubule motor dynein involved in neurite initiation and a novel role for the microtubule end-binding protein EB2 in attenuation of neurite outgrowth. Epistasis analysis suggests that competition between EB1 and EB2 regulates neurite length, which links its expression to neurite outgrowth. We propose a model that explains how microtubule regulators can mediate cellular morphogenesis during the early steps of neuronal development by controlling microtubule stabilization and organizing dynein-generated forces.


Assuntos
Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Neurogênese/genética , Neurônios/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Diferenciação Celular/genética , Citoplasma/genética , Citoplasma/metabolismo , Complexo Dinactina , Dineínas/genética , Dineínas/metabolismo , Camundongos , Neuritos/metabolismo , Neurônios/metabolismo , Ligação Proteica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...