Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 439(1): 61-5, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18511192

RESUMO

Following brain trauma, chondroitin sulphate proteoglycans (CSPGs) are enriched at injury sites and in denervated areas. At injury sites, CSPGs are regarded as inhibitors of axonal regeneration because of their growth inhibitory properties. In areas of denervation their role is less clear, since they are enriched in zones of sprouting, i.e. zones of axonal growth. To identify CSPGs expressed in a denervated brain area and to quantify changes in their mRNA expression, neurocan, brevican, NG2, phosphacan and aggrecan mRNA were analyzed in the rat fascia dentata following entorhinal denervation. Laser microdissection was combined with quantitative RT-PCR to measure mRNA changes specifically within the denervated portion of the molecular layer (1h, 6h, 10h, 12h, 1d, 2d, 3d, 4d, 7d and 14d post-lesion). Changes in glial fibrillary protein mRNA were measured at the same time points and used as lesion control. This approach revealed a differential regulation of CSPG mRNAs in the denervated zone: neurocan, brevican and NG2 mRNA were upregulated with a maximum around 2 days post-lesion. In contrast, aggrecan mRNA levels reached a maximum 7 days post-lesion and phosphacan mRNA levels were not significantly altered. Taken together, our data reveal a temporal pattern in CSPG mRNA expression in the denervated fascia dentata. This suggests specific biological functions for CSPGs during the denervation-induced reorganization process: whereas the early increase in CSPGs in the denervated zone could influence the pattern of sprouting, the late increase of aggrecan mRNA suggests a different role during the late phase of reorganization.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/genética , Giro Denteado/metabolismo , Córtex Entorrinal/lesões , Lateralidade Funcional/fisiologia , Regulação da Expressão Gênica/fisiologia , RNA Mensageiro/metabolismo , Animais , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Denervação/métodos , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Microdissecção , Vias Neurais/fisiologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
2.
J Comp Neurol ; 499(3): 471-84, 2006 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-16998909

RESUMO

Synaptopodin is an actin-associated molecule essential for the formation of a spine apparatus in telencephalic spines. To study whether synaptopodin and the spine apparatus organelle are regulated under conditions of lesion-induced plasticity, synaptopodin and the spine apparatus were analyzed in granule cells of the rat fascia dentata following entorhinal denervation. Confocal microscopy was employed to quantify layer-specific changes in synaptopodin-immunoreactive puncta densities. Electron microscopy was used to quantify layer-specific changes in spine apparatus organelles. Within the denervated middle and outer molecular layers, the layers of deafferentation-induced spine loss, synaptogenesis, and spinogenesis, the density of synaptopodin puncta and the number of spine apparatuses decreased by 4 days postlesion and slowly recovered in parallel with spinogenesis by 180 days postlesion. Within the nondenervated inner molecular layer, the zone without deafferentation-induced spine loss, a rapid loss of synaptopodin puncta and spine apparatuses was also observed. In this layer, spine apparatus densities recovered by 14 days postlesion, in parallel with plastic remodeling at the synaptic level and the postlesional recovery of granule cell activity. These data demonstrate layer-specific changes in the distribution of synaptopodin and the spine apparatus organelle following partial denervation of granule cells: in the layer of spine loss, spine apparatus densities follow spine densities; in the layer of spine maintenance, however, spine apparatus densities appear to be regulated by other signals.


Assuntos
Espinhas Dendríticas/metabolismo , Giro Denteado/metabolismo , Córtex Entorrinal/metabolismo , Proteínas dos Microfilamentos/metabolismo , Plasticidade Neuronal/fisiologia , Via Perfurante/metabolismo , Animais , Diferenciação Celular/fisiologia , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Espinhas Dendríticas/ultraestrutura , Denervação , Giro Denteado/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Córtex Entorrinal/lesões , Córtex Entorrinal/ultraestrutura , Imuno-Histoquímica , Masculino , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Organelas/metabolismo , Organelas/ultraestrutura , Via Perfurante/ultraestrutura , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Sprague-Dawley , Sinapses/metabolismo , Sinapses/ultraestrutura , Transmissão Sináptica/fisiologia
3.
Neuron ; 49(5): 697-706, 2006 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-16504945

RESUMO

The voltage-gated potassium (Kv) channel subunit Kv1.1 is a major constituent of presynaptic A-type channels that modulate synaptic transmission in CNS neurons. Here, we show that Kv1.1-containing channels are complexed with Lgi1, the functionally unassigned product of the leucine-rich glioma inactivated gene 1 (LGI1), which is causative for an autosomal dominant form of lateral temporal lobe epilepsy (ADLTE). In the hippocampal formation, both Kv1.1 and Lgi1 are coassembled with Kv1.4 and Kvbeta1 in axonal terminals. In A-type channels composed of these subunits, Lgi1 selectively prevents N-type inactivation mediated by the Kvbeta1 subunit. In contrast, defective Lgi1 molecules identified in ADLTE patients fail to exert this effect resulting in channels with rapid inactivation kinetics. The results establish Lgi1 as a novel subunit of Kv1.1-associated protein complexes and suggest that changes in inactivation gating of presynaptic A-type channels may promote epileptic activity.


Assuntos
Encéfalo/metabolismo , Canal de Potássio Kv1.1/fisiologia , Canal de Potássio Kv1.2/fisiologia , Inibição Neural/fisiologia , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting/métodos , Encéfalo/citologia , Química Encefálica , Membrana Celular/metabolismo , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Humanos , Imuno-Histoquímica/métodos , Peptídeos e Proteínas de Sinalização Intracelular , Espectrometria de Massas/métodos , Potenciais da Membrana/fisiologia , Mutagênese/fisiologia , Mutação , Oócitos , Técnicas de Patch-Clamp/métodos , Conformação Proteica , Ratos , Alinhamento de Sequência , Coloração pela Prata/métodos , Transfecção/métodos , Xenopus
4.
Glia ; 53(5): 491-500, 2006 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16369932

RESUMO

The chondroitin sulfate proteoglycan NG2 is a component of the glial scar following brain injury. Because of its growth inhibiting properties, it has been suggested to impede axonal regeneration. To study whether NG2 could also regulate axonal growth in denervated brain areas, changes in NG2 were studied in the rat fascia dentata following entorhinal deafferentation and were correlated with the post-lesional sprouting response. Laser microdissection was employed to selectively harvest the denervated molecular layer and combined with quantitative RT-PCR to measure changes in NG2 mRNA (6 h, 12 h, 2 days, 4 days, 7 days post-lesion). This revealed increases of NG2 mRNA at day 2 (2.5-fold) and day 4 (2-fold) post-lesion. Immunocytochemistry was used to detect changes in NG2 protein (1 days, 4 days, 7 days, 10 days, 14 days, 30 days, 6 months post-lesion). NG2 staining was increased in the denervated outer molecular layer at day 1 post-lesion, reached a maximum 10 days post-lesion, and returned to control levels thereafter. Electron microscopy revealed NG2 immunoprecipitate on glial surfaces and in the extracellular matrix around neuronal profiles, indicating that NG2 is secreted following denervation. Double labeling of NG2-immunopositive cells with markers for astrocytes, microglia/macrophages, and mature oligodendrocytes suggested that NG2 cells are a distinct glial subpopulation before and after entorhinal deafferentation. BrdU labeling revealed that some of the NG2-positive cells are generated post-lesion. Taken together, our data revealed a layer-specific upregulation of NG2 in the denervated fascia dentata that coincides with the sprouting response. This suggests that NG2 could regulate lesion-induced axonal growth in denervated areas of the brain.


Assuntos
Antígenos/biossíntese , Córtex Entorrinal/fisiologia , Proteoglicanas/biossíntese , Acetilcolinesterase/metabolismo , Animais , Antimetabólitos , Bromodesoxiuridina , Denervação , Imuno-Histoquímica , Lasers , Masculino , Neurônios Aferentes/fisiologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima/fisiologia
5.
Glia ; 48(1): 76-84, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15326617

RESUMO

Astrocytes are one of the major cell types responding to central nervous system injury. Upregulation of the astrocytic intermediate filament molecule glial fibrillary acidic protein (GFAP) is a key event associated with this reaction. To study the response of astrocytes to different types of brain lesions, GFAP mRNA expression was analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in mouse brain following injury, axonal denervation (entorhinal cortex lesion), and amyloid plaque deposition (APP23 transgenic mice). Analysis of tissue areas surrounding a lesion revealed a 21-fold increase of GFAP mRNA in tissue surrounding an injury site, a 6-fold increase in denervated tissue areas, and a 5-fold increase in plaque containing tissue. To this GFAP mRNA increase, astrocytic proliferation and migration as well as an increase of cellular GFAP mRNA expression within astrocytes could have contributed. To determine the degree of GFAP mRNA upregulation in individual astrocytes, an immunofluorescence protocol was developed to harvest astrocytes selectively by laser microdissection and preserve intact RNA. qRT-PCR analysis of GFAP mRNA in microdissected astrocytes revealed an 82-fold increase in astrocytes surrounding an injury site, a 30-fold increase in astrocytes located in a denervation zone, and an 18-fold increase in astrocytes surrounding an amyloid plaque. These data demonstrate that GFAP mRNA is strongly upregulated within individual reactive astrocytes in response to a lesion. Because astrocytic GFAP mRNA upregulation differs among the three lesioning paradigms, we conclude that the lesion type is an important determinant of postlesional astrocytic reactivity.


Assuntos
Axônios/fisiologia , Lesões Encefálicas/metabolismo , Proteína Glial Fibrilar Ácida/biossíntese , Placa Amiloide/metabolismo , RNA Mensageiro/biossíntese , Animais , Astrócitos/metabolismo , Técnicas Citológicas , Primers do DNA , DNA Complementar/biossíntese , DNA Complementar/genética , Denervação , Córtex Entorrinal/lesões , Imunofluorescência , Lasers , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima/fisiologia
6.
J Neurosci Methods ; 138(1-2): 141-8, 2004 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-15325122

RESUMO

Astrocytes represent the major glial cell population within the central nervous system. In order to elucidate the function of astrocytes under physiological conditions and during the course of neurological disease, astrocytic gene expression profiling is necessary. However, since astrocytes form an intimately connected network with neurons and other cell types in the brain, gene expression analysis of astrocytes with a sufficient degree of cellular specificity is difficult. Here we are presenting a rapid and, thus, RNA preserving immunostaining protocol for the detection of astrocytes in rodent brain. This protocol can readily be combined with laser microdissection (Leica AS LMD platform) and quantitative RT-PCR (qPCR). Employing this method, we studied changes in glial fibrillary acidic protein (GFAP) expression in astrocytes of mouse entorhinal cortex following entorhinal cortex lesion. Using laser microdissection, astrocytes (n = 60) were collected in the tissue surrounding the lesion, the entorhinal cortex contralateral to the lesion, and in unlesioned control animals. Changes in GFAP mRNA were quantified using qPCR. GFAP mRNA levels were 82-fold higher in astrocytes of lesioned animals at the site of the lesion compared to GFAP mRNA levels in entorhinal cortex astrocytes of control mice. GFAP mRNA levels were only slightly elevated at the contralateral side (lesioned animals). This optimized protocol for immunolabeling and laser microdissection of astrocytes followed by qPCR allows quantification of astrocytic gene expression levels with a high degree of cellular specificity. It may similarly be employed in different settings where other cell types need to be identified and microdissected for gene expression profiling.


Assuntos
Astrócitos/metabolismo , Expressão Gênica , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Microdissecção/métodos , Animais , Lateralidade Funcional , Proteína Glial Fibrilar Ácida/genética , Imuno-Histoquímica/métodos , Lasers , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/biossíntese , RNA Ribossômico 18S/análise , RNA Ribossômico 28S/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Estatísticas não Paramétricas , Regulação para Cima
7.
J Neurosci Methods ; 131(1-2): 83-91, 2003 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-14659827

RESUMO

Laser microdissection in combination with quantitative RT-PCR is now widely appreciated as an excellent tool for quantifying mRNA levels in defined cell populations. It may be particularly useful in the hippocampal formation, where principal cells form distinct and readily identifiable cell layers. Here we are presenting an optimized protocol for labeling hippocampal principal cells on foil-mounted sections for microdissection with the Leica AS LMD system and discuss potential further applications and pitfalls. Employing this optimized method, we studied changes in brain-derived neurotrophic factor (BDNF) mRNA expression in granule cells of the mouse dentate gyrus following unilateral entorhinal cortex lesion. In this lesioning paradigm, changes in BDNF mRNA expression have previously been reported in the rat. Using laser microdissection, the granule cell layers ipsi- and contralateral to the lesion were collected and changes in BDNF levels were quantified using quantitative RT-PCR. BDNF mRNA levels were five-fold higher on the ipsilateral side compared to levels found on the contralateral side or in controls. The development of this optimized method for laser microdissection and subsequent quantitative RT-PCR allows layer-specific quantification of gene expression levels in the hippocampus and may be similarly employed in other brain areas or tissues with a laminar arrangement or high density of cells.


Assuntos
Hipocampo/metabolismo , Lasers , Microdissecção/métodos , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Expressão Gênica , Hipocampo/citologia , Histocitoquímica/métodos , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/biossíntese , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...