Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3060, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244931

RESUMO

Formation of oriented myofibrils is a key event in musculoskeletal development. However, the mechanisms that drive myocyte orientation and fusion to control muscle directionality in adults remain enigmatic. Here, we demonstrate that the developing skeleton instructs the directional outgrowth of skeletal muscle and other soft tissues during limb and facial morphogenesis in zebrafish and mouse. Time-lapse live imaging reveals that during early craniofacial development, myoblasts condense into round clusters corresponding to future muscle groups. These clusters undergo oriented stretch and alignment during embryonic growth. Genetic perturbation of cartilage patterning or size disrupts the directionality and number of myofibrils in vivo. Laser ablation of musculoskeletal attachment points reveals tension imposed by cartilage expansion on the forming myofibers. Application of continuous tension using artificial attachment points, or stretchable membrane substrates, is sufficient to drive polarization of myocyte populations in vitro. Overall, this work outlines a biomechanical guidance mechanism that is potentially useful for engineering functional skeletal muscle.


Assuntos
Músculo Esquelético , Peixe-Zebra , Animais , Camundongos , Peixe-Zebra/genética , Músculo Esquelético/fisiologia , Miofibrilas/fisiologia , Morfogênese , Mioblastos/fisiologia
2.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35135875

RESUMO

The L-type voltage-gated Ca2+ channel gene CACNA1C is a risk gene for various psychiatric conditions, including schizophrenia and bipolar disorder. However, the cellular mechanism by which CACNA1C contributes to psychiatric disorders has not been elucidated. Here, we report that the embryonic deletion of Cacna1c in neurons destined for the cerebral cortex using an Emx1-Cre strategy disturbs spontaneous Ca2+ activity and causes abnormal brain development and anxiety. By combining computational modeling with electrophysiological membrane potential manipulation, we found that neural network activity was driven by intrinsic spontaneous Ca2+ activity in distinct progenitor cells expressing marginally increased levels of voltage-gated Ca2+ channels. MRI examination of the Cacna1c knockout mouse brains revealed volumetric differences in the neocortex, hippocampus, and periaqueductal gray. These results suggest that Cacna1c acts as a molecular switch and that its disruption during embryogenesis can perturb Ca2+ handling and neural development, which may increase susceptibility to psychiatric disease.


Assuntos
Transtornos de Ansiedade/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Animais , Relógios Biológicos , Canais de Cálcio Tipo L/genética , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Camundongos , Camundongos Knockout , Células-Tronco Neurais
3.
J Neurosci Methods ; 311: 259-266, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30389486

RESUMO

BACKGROUND: The spinal cord is composed of a large number of cells that interact to allow the organism to function. To perform detail studies of cellular processes involved in spinal cord injury (SCI), one must use repeatable and specific methods to target and injure restricted areas of the spinal cord. NEW METHOD: We propose a robust method to induce SCI in zebrafish by laser light. With a 2-photon microscope equipped with a femtosecond near-infrared pump laser, we explored the effects of laser beam exposure time, area, and intensity to induce precise and repeatable SCI with minimized collateral damage to neighboring cells. RESULTS: Through behavioral studies in zebrafish larvae, we assessed the functional outcome of intensive laser light directed at the spinal cord. Our experiments revealed that a laser pulse with wavelength 800 nm, duration 2.6 ms, and light intensity 390 mW was sufficient to induce controlled cell death in a single cell or a spinal cord segment. Collateral damage was observed if cells were exposed to laser pulses exceeding 470 mW. With these settings, we could induce precise and repeatable SCI in zebrafish larvae, resulting in loss of motor and sensory function. COMPARISON WITH EXISTING METHOD(S): Our method offers a simple and more controlled setting to induce SCI in zebrafish. We describe how the near-infrared femtosecond laser should be adjusted for achieving optimal results with minimal collateral damage. CONCLUSIONS: We present a precise and robust method for inducing SCI in zebrafish with single-cell resolution using femtosecond near-infrared laser pulses.


Assuntos
Modelos Animais de Doenças , Lasers , Procedimentos Neurocirúrgicos/instrumentação , Procedimentos Neurocirúrgicos/métodos , Traumatismos da Medula Espinal/fisiopatologia , Animais , Larva , Locomoção , Microscopia Confocal/métodos , Microcirurgia/instrumentação , Microcirurgia/métodos , Traumatismos da Medula Espinal/patologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...