Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 19(3): 1035-1043, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36705611

RESUMO

We discuss how to include our recently proposed thermopotentiostat technique [Deissenbeck et al. Phys. Rev. Lett. 2021, 126, 136803] into any existing ab initio molecular dynamics (AIMD) package. Using thermopotentiostat AIMD simulations in the canonical NVTΦ ensemble at a constant electrode potential, we compute the polarization bound charge and dielectric response of interfacial water from first principles.

2.
Phys Chem Chem Phys ; 21(35): 19153-19162, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31432804

RESUMO

Control over microstructure and interparticle spacing in substrate-supported colloidal arrangements is a key challenge in colloidal self-assembly. We demonstrate here the preparation of Moiré and honeycomb monolayer lattices from core/shell microgels with rigid inorganic cores and soft, deformable hydrogel shells. These structures were realized by the sequential double deposition of freely floating monolayers from the air/water interface onto the same, centimetre-scale substrate. Due to the soft and deformable character of the hydrogel shells, the second applied monolayer fully settles into the same plane as the first monolayer. The resulting structural motif is determined by the drying conditions applied to the second deposition step. We support our experimental findings by Brownian dynamics simulations and provide insights into the structure formation process.

3.
Phys Rev E ; 97(5-1): 052608, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29906819

RESUMO

We investigate the ground state of a classical two-dimensional system of hard-sphere dipoles confined between two hard walls. Using lattice sum minimization techniques we reveal that at fixed wall separations, a first-order transition from a vacuum to a straight one-dimensional chain of dipoles occurs upon increasing the density. Further increase in the density yields the stability of an undulated chain as well as nontrivial buckling structures. We explore the close-packed configurations of dipoles in detail, and we find that, in general, the densest packings of dipoles possess complex magnetizations along the principal axis of the slit. Our predictions serve as a guideline for experiments with granular dipolar and magnetic colloidal suspensions confined in slitlike channel geometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...