Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(17): 17058-17069, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37638526

RESUMO

Cation exchange offers a strong postsynthetic tool for nanoparticles that are unachievable via direct synthesis, but its velocity makes observing the onset of the reaction in the liquid state almost impossible. After successfully proving that cation exchange reactions can be triggered, performed, and followed live at the solid state by an in situ transmission electron microscopy approach, we studied the deep mechanisms ruling the onset of cation exchange reactions, i.e., the adsorption, penetration, and diffusion of cations in the host matrices of two crystal phases of CdSe. Exploiting an in situ scanning transmission electron microscopy approach with a latest generation heating holder, we were able to trigger, freeze, and image the initial stages of cation exchange with much higher detail. Also, we found a connection between the crystal structure of CdSe, the starting temperature, and the route of the cation exchange reaction. All the experimental results were further reviewed by molecular dynamics simulations of the whole cation exchange reaction divided in subsequent steps. The simulations highlighted how the cation exchange mechanism and the activation energies change with the host crystal structures. Furthermore, the simulative results strongly corroborated the activation temperatures and the cation exchange rates obtained experimentally, providing a deeper understanding of its phenomenology and mechanism at the atomic scale.

2.
Nanotechnology ; 28(49): 495702, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29016361

RESUMO

An accurate description of the structural and chemical modifications of cerium oxide nanoparticles (NPs) is mandatory for understanding their functionality in applications. In this work we investigate the relation between local atomic structure, oxidation state, defectivity and size in cerium oxide NPs with variable diameter below 10 nm, using x-ray absorption fine structure analysis in the near and extended energy range. The NPs are prepared by physical methods under controlled conditions and analyzed in morphology and crystalline quality by high resolution transmission electron microscopy. We resolve here an important question on the local structure of cerium oxide NPs: we demonstrate a progressive contraction in the Ce-O interatomic distance with decreasing NP diameter and we relate the observed effect to the reduced dimensionality. The contraction is not significantly modified by inducing a 4%-6% higher Ce3+ concentration through thermal annealing in high vacuum. The consequences of the observed average cation-anion distance contraction on the properties of the NPs are discussed.

3.
Nano Lett ; 17(8): 5056-5063, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28700239

RESUMO

Toward the large-area deposition of MoS2 layers, we employ metal-organic precursors of Mo and S for a facile and reproducible van der Waals epitaxy on c-plane sapphire. Exposing c-sapphire substrates to alkali metal halide salts such as KI or NaCl together with the Mo precursor prior to the start of the growth process results in increasing the lateral dimensions of single crystalline domains by more than 2 orders of magnitude. The MoS2 grown this way exhibits high crystallinity and optoelectronic quality comparable to single-crystal MoS2 produced by conventional chemical vapor deposition methods. The presence of alkali metal halides suppresses the nucleation and enhances enlargement of domains while resulting in chemically pure MoS2 after transfer. Field-effect measurements in polymer electrolyte-gated devices result in promising electron mobility values close to 100 cm2 V-1 s-1 at cryogenic temperatures.

4.
Nano Lett ; 17(7): 4223-4230, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28592108

RESUMO

A long-standing problem in the application of solid-state nanopores is the lack of the precise control over the geometry of artificially formed pores compared to the well-defined geometry in their biological counterpart, that is, protein nanopores. To date, experimentally investigated solid-state nanopores have been shown to adopt an approximately circular shape. In this Letter, we investigate the geometrical effect of the nanopore shape on ionic blockage induced by DNA translocation using triangular h-BN nanopores and approximately circular molybdenum disulfide (MoS2) nanopores. We observe a striking geometry-dependent ion scattering effect, which is further corroborated by a modified ionic blockage model. The well-acknowledged ionic blockage model is derived from uniform ion permeability through the 2D nanopore plane and hemisphere like access region in the nanopore vicinity. On the basis of our experimental results, we propose a modified ionic blockage model, which is highly related to the ionic profile caused by geometrical variations. Our findings shed light on the rational design of 2D nanopores and should be applicable to arbitrary nanopore shapes.

5.
Phys Chem Chem Phys ; 17(42): 28121-8, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25772332

RESUMO

Size-selected 9 nm PtxY nanoparticles have recently shown an outstanding catalytic activity for the oxygen reduction reaction, representing a promising cathode catalyst for proton exchange membrane fuel cells (PEMFCs). Studying their electrochemical dealloying is a fundamental step towards the understanding of both their activity and stability. Herein, size-selected 9 nm PtxY nanoparticles have been deposited on the cathode side of a PEMFC specifically designed for in situ ambient pressure X-ray photoelectron spectroscopy (APXPS). The dealloying mechanism was followed in situ for the first time. It proceeds through the progressive oxidation of alloyed Y atoms, soon leading to the accumulation of Y(3+) cations at the cathode. Acid leaching with sulfuric acid is capable of accelerating the dealloying process and removing these Y(3+) cations which might cause long term degradation of the membrane. The use of APXPS under near operating conditions allowed observing the population of oxygenated surface species as a function of the electrochemical potential. Similar to the case of pure Pt nanoparticles, non-hydrated hydroxide plays a key role in the ORR catalytic process.

6.
Chem Sci ; 6(1): 190-196, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28553467

RESUMO

Oxygen evolution was investigated on model, mass-selected RuO2 nanoparticles in acid, prepared by magnetron sputtering. Our investigations include electrochemical measurements, electron microscopy, scanning tunneling microscopy and X-ray photoelectron spectroscopy. We show that the stability and activity of nanoparticulate RuO2 is highly sensitive to its surface pretreatment. At 0.25 V overpotential, the catalysts show a mass activity of up to 0.6 A mg-1 and a turnover frequency of 0.65 s-1, one order of magnitude higher than the current state-of-the-art.

7.
Nano Lett ; 14(10): 5803-9, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25198035

RESUMO

Employing rationally designed model systems with precise atom-by-atom particle size control, we demonstrate by means of combining noninvasive in situ indirect nanoplasmonic sensing and ex situ scanning transmission electron microscopy that monomodal size-selected platinum cluster catalysts on different supports exhibit remarkable intrinsic sintering resistance even under reaction conditions. The observed stability is related to suppression of Ostwald ripening by elimination of its main driving force via size-selection. This study thus constitutes a general blueprint for the rational design of sintering resistant catalyst systems and for efficient experimental strategies to determine sintering mechanisms. Moreover, this is the first systematic experimental investigation of sintering processes in nanoparticle systems with an initially perfectly monomodal size distribution under ambient conditions.

8.
Phys Chem Chem Phys ; 16(48): 26506-13, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25047100

RESUMO

Mass-selected nanoparticles can be conveniently produced using magnetron sputtering and aggregation techniques. However, numerous pitfalls can compromise the quality of the samples, e.g. double or triple mass production, dendritic structure formation or unpredicted particle composition. We stress the importance of transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and ion scattering spectroscopy (ISS) for verifying the morphology, size distribution and chemical composition of the nanoparticles. Furthermore, we correlate the morphology and the composition of the PtxY nanoparticles with their catalytic properties for the oxygen reduction reaction. Finally, we propose a completely general diagnostic method, which allows us to minimize the occurrence of undesired masses.

9.
Nat Chem ; 6(8): 732-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25054945

RESUMO

Low-temperature fuel cells are limited by the oxygen reduction reaction, and their widespread implementation in automotive vehicles is hindered by the cost of platinum, currently the best-known catalyst for reducing oxygen in terms of both activity and stability. One solution is to decrease the amount of platinum required, for example by alloying, but without detrimentally affecting its properties. The alloy PtxY is known to be active and stable, but its synthesis in nanoparticulate form has proved challenging, which limits its further study. Herein we demonstrate the synthesis, characterization and catalyst testing of model PtxY nanoparticles prepared through the gas-aggregation technique. The catalysts reported here are highly active, with a mass activity of up to 3.05 A mgPt(-1) at 0.9 V versus a reversible hydrogen electrode. Using a variety of characterization techniques, we show that the enhanced activity of PtxY over elemental platinum results exclusively from a compressive strain exerted on the platinum surface atoms by the alloy core.


Assuntos
Nanopartículas Metálicas/química , Oxigênio/química , Platina/química , Ligas/química , Catálise , Eletrodos , Gases/química , Oxirredução , Tamanho da Partícula
10.
Nano Lett ; 14(3): 1603-8, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24506229

RESUMO

The direct electrochemical synthesis of hydrogen peroxide is a promising alternative to currently used batch synthesis methods. Its industrial viability is dependent on the effective catalysis of the reduction of oxygen at the cathode. Herein, we study the factors controlling activity and selectivity for H2O2 production on metal surfaces. Using this approach, we discover two new catalysts for the reaction, Ag-Hg and Pd-Hg, with unique electrocatalytic properties both of which exhibit performance that far exceeds the current state-of-the art.

11.
Nat Mater ; 12(12): 1137-43, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24240242

RESUMO

Future generations require more efficient and localized processes for energy conversion and chemical synthesis. The continuous on-site production of hydrogen peroxide would provide an attractive alternative to the present state-of-the-art, which is based on the complex anthraquinone process. The electrochemical reduction of oxygen to hydrogen peroxide is a particularly promising means of achieving this aim. However, it would require active, selective and stable materials to catalyse the reaction. Although progress has been made in this respect, further improvements through the development of new electrocatalysts are needed. Using density functional theory calculations, we identify Pt-Hg as a promising candidate. Electrochemical measurements on Pt-Hg nanoparticles show more than an order of magnitude improvement in mass activity, that is, A g(-1) precious metal, for H2O2 production, over the best performing catalysts in the literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...