RESUMO
Alzheimer's disease (AD) accounts for about 70% of neurodegenerative diseases and is a cause of cognitive decline and death for one-third of seniors. AD is currently underdiagnosed, and it cannot be effectively prevented. Aggregation of amyloid-ß (Aß) proteins has been linked to the development of AD, and it has been established that, under pathological conditions, Aß proteins undergo structural changes to form ß-sheet structures that are considered neurotoxic. Numerous intensive in vitro studies have provided detailed information about amyloid polymorphs; however, little is known on how amyloid ß-sheet-enriched aggregates can cause neurotoxicity in relevant settings. We used scattering-type scanning near-field optical microscopy (s-SNOM) to study amyloid structures at the nanoscale, in individual neurons. Specifically, we show that in well-validated systems, s-SNOM can detect amyloid ß-sheet structures with nanometer spatial resolution in individual neurons. This is a proof-of-concept study to demonstrate that s-SNOM can be used to detect Aß-sheet structures on cell surfaces at the nanoscale. Furthermore, this study is intended to raise neurobiologists' awareness of the potential of s-SNOM as a tool for analyzing amyloid ß-sheet structures at the nanoscale in neurons without the need for immunolabeling.