Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Eur J Hum Genet ; 28(8): 1034-1043, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32214227

RESUMO

A high rate of consanguinity leads to a high prevalence of autosomal recessive disorders in inbred populations. One example of inbred populations is the Arab communities in Israel and the Palestinian Authority. In the Palestinian Authority in particular, due to limited access to specialized medical care, most patients do not receive a genetic diagnosis and can therefore neither receive genetic counseling nor possibly specific treatment. We used whole-exome sequencing as a first-line diagnostic tool in 83 Palestinian and Israeli Arab families with suspected neurogenetic disorders and were able to establish a probable genetic diagnosis in 51% of the families (42 families). Pathogenic, likely pathogenic or highly suggestive candidate variants were found in the following genes extending and refining the mutational and phenotypic spectrum of these rare disorders: ACO2, ADAT3, ALS2, AMPD2, APTX, B4GALNT1, CAPN1, CLCN1, CNTNAP1, DNAJC6, GAMT, GPT2, KCNQ2, KIF11, LCA5, MCOLN1, MECP2, MFN2, MTMR2, NT5C2, NTRK1, PEX1, POLR3A, PRICKLE1, PRKN, PRX, SCAPER, SEPSECS, SGCG, SLC25A15, SPG11, SYNJ1, TMCO1, and TSEN54. Further, this cohort has proven to be ideal for prioritization of new disease genes. Two separately published candidate genes (WWOX and PAX7) were identified in this study. Analyzing the runs of homozygosity (ROHs) derived from the Exome sequencing data as a marker for the rate of inbreeding, revealed significantly longer ROHs in the included families compared with a German control cohort. The total length of ROHs correlated with the detection rate of recessive disease-causing variants. Identification of the disease-causing gene led to new therapeutic options in four families.


Assuntos
Árabes/genética , Sequenciamento do Exoma/estatística & dados numéricos , Frequência do Gene , Predisposição Genética para Doença , Doenças do Sistema Nervoso/genética , Feminino , Loci Gênicos , Humanos , Masculino , Linhagem , Sequenciamento do Exoma/normas
3.
Nat Commun ; 11(1): 595, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001716

RESUMO

Developmental epileptic encephalopathies are devastating disorders characterized by intractable epileptic seizures and developmental delay. Here, we report an allelic series of germline recessive mutations in UGDH in 36 cases from 25 families presenting with epileptic encephalopathy with developmental delay and hypotonia. UGDH encodes an oxidoreductase that converts UDP-glucose to UDP-glucuronic acid, a key component of specific proteoglycans and glycolipids. Consistent with being loss-of-function alleles, we show using patients' primary fibroblasts and biochemical assays, that these mutations either impair UGDH stability, oligomerization, or enzymatic activity. In vitro, patient-derived cerebral organoids are smaller with a reduced number of proliferating neuronal progenitors while mutant ugdh zebrafish do not phenocopy the human disease. Our study defines UGDH as a key player for the production of extracellular matrix components that are essential for human brain development. Based on the incidence of variants observed, UGDH mutations are likely to be a frequent cause of recessive epileptic encephalopathy.


Assuntos
Epilepsia/genética , Genes Recessivos , Mutação com Perda de Função/genética , Oxirredutases/genética , Uridina Difosfato Glucose Desidrogenase/genética , Adolescente , Alelos , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Cinética , Masculino , Organoides/patologia , Oxirredutases/química , Linhagem , Domínios Proteicos , Síndrome , Peixe-Zebra
4.
Eur J Med Genet ; 62(11): 103582, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30472486

RESUMO

Based on a homozygous missense variant p.Pro311Ala found in three siblings of a consanguineous family, mutations in the STYXL1 gene were suggested to cause moderate intellectual disability, epilepsy and complex behavioural abnormalities. We have detected this variant via whole exome sequencing in a homozygous state in two families. Segregation analyses in our families and thorough validation in international genetic databases provides evidence that this variant is most likely benign. This is important information for genetic counselling. The role of STYXL1 variants in human disease needs to be established.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Epilepsia/genética , Deficiência Intelectual/genética , Epilepsia/fisiopatologia , Exoma/genética , Feminino , Aconselhamento Genético/normas , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Mutação de Sentido Incorreto/genética , Linhagem , Comportamento Problema , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...