Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(36): e2400085121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39186643

RESUMO

As climate change shifts crop exposure to dry and wet extremes, a better understanding of factors governing crop response is needed. Recent studies identified shallow groundwater-groundwater within or near the crop rooting zone-as influential, yet existing evidence is largely based on theoretical crop model simulations, indirect or static groundwater data, or small-scale field studies. Here, we use observational satellite yield data and dynamic water table simulations from 1999 to 2018 to provide field-scale evidence for shallow groundwater effects on maize yields across the United States Corn Belt. We identify three lines of evidence supporting groundwater influence: 1) crop model simulations better match observed yields after improvements in groundwater representation; 2) machine learning analysis of observed yields and modeled groundwater levels reveals a subsidy zone between 1.1 and 2.5 m depths, with yield penalties at shallower depths and no effect at deeper depths; and 3) locations with groundwater typically in the subsidy zone display higher yield stability across time. We estimate an average 3.4% yield increase when groundwater levels are at optimum depth, and this effect roughly doubles in dry conditions. Groundwater yield subsidies occur ~35% of years on average across locations, with 75% of the region benefitting in at least 10% of years. Overall, we estimate that groundwater-yield interactions had a net monetary contribution of approximately $10 billion from 1999 to 2018. This study provides empirical evidence for region-wide groundwater yield impacts and further underlines the need for better quantification of groundwater levels and their dynamic responses to short- and long-term weather conditions.

2.
Ground Water ; 62(1): 15-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37345502

RESUMO

Effective groundwater management is critical to future environmental, ecological, and social sustainability and requires accurate estimates of groundwater withdrawals. Unfortunately, these estimates are not readily available in most areas due to physical, regulatory, and social challenges. Here, we compare four different approaches for estimating groundwater withdrawals for agricultural irrigation. We apply these methods in a groundwater-irrigated region in the state of Kansas, USA, where high-quality groundwater withdrawal data are available for evaluation. The four methods represent a broad spectrum of approaches: (1) the hydrologically-based Water Table Fluctuation method (WTFM); (2) the demand-based SALUS crop model; (3) estimates based on satellite-derived evapotranspiration (ET) data from OpenET; and (4) a landscape hydrology model which integrates hydrologic- and demand-based approaches. The applicability of each approach varies based on data availability, spatial and temporal resolution, and accuracy of predictions. In general, our results indicate that all approaches reasonably estimate groundwater withdrawals in our region, however, the type and amount of data required for accurate estimates and the computational requirements vary among approaches. For example, WTFM requires accurate groundwater levels, specific yield, and recharge data, whereas the SALUS crop model requires adequate information about crop type, land use, and weather. This variability highlights the difficulty in identifying what data, and how much, are necessary for a reasonable groundwater withdrawal estimate, and suggests that data availability should drive the choice of approach. Overall, our findings will help practitioners evaluate the strengths and weaknesses of different approaches and select the appropriate approach for their application.


Assuntos
Água Subterrânea , Abastecimento de Água , Irrigação Agrícola , Tempo (Meteorologia) , Hidrologia
3.
Glob Chang Biol ; 29(3): 794-807, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36345737

RESUMO

Cover crops are gaining traction in many agricultural regions, partly driven by increased public subsidies and by private markets for ecosystem services. These payments are motivated by environmental benefits, including improved soil health, reduced erosion, and increased soil organic carbon. However, previous work based on experimental plots or crop modeling indicates cover crops may reduce crop yields. It remains unclear, though, how recent cover crop adoption has affected productivity in commercial agricultural systems. Here we perform the first large-scale, field-level analysis of observed yield impacts from cover cropping as implemented across the US Corn Belt. We use validated satellite data products at sub-field scales to analyze maize and soybean yield outcomes for over 90,000 fields in 2019-2020. Because we lack data on cover crop species or timing, we seek to quantify the yield impacts of cover cropping as currently practiced in aggregate. Using causal forests analysis, we estimate an average maize yield loss of 5.5% on fields where cover crops were used for 3 or more years, compared with fields that did not adopt cover cropping. Maize yield losses were larger on fields with better soil ratings, cooler mid-season temperatures, and lower spring rainfall. For soybeans, average yield losses were 3.5%, with larger impacts on fields with warmer June temperatures, lower spring and late-season rainfall, and, to a lesser extent, better soils. Estimated impacts are consistent with multiple mechanisms indicated by experimental and simulation-based studies, including the effects of cover crops on nitrogen dynamics, water consumption, and soil oxygen depletion. Our results suggest a need to improve cover crop management to reduce yield penalties, and a potential need to target subsidies based on likely yield impacts. Ultimately, avoiding substantial yield penalties is important for realizing widespread adoption and associated benefits for water quality, erosion, soil carbon, and greenhouse gas emissions.


Assuntos
Solo , Zea mays , Estados Unidos , Glycine max , Ecossistema , Carbono , Agricultura/métodos , Produtos Agrícolas
4.
Sci Data ; 7(1): 307, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934216

RESUMO

Field-level monitoring of crop types in the United States via the Cropland Data Layer (CDL) has played an important role in improving production forecasts and enabling large-scale study of agricultural inputs and outcomes. Although CDL offers crop type maps across the conterminous US from 2008 onward, such maps are missing in many Midwestern states or are uneven in quality before 2008. To fill these data gaps, we used the now-public Landsat archive and cloud computing services to map corn and soybean at 30 m resolution across the US Midwest from 1999-2018. Our training data were CDL from 2008-2018, and we validated the predictions on CDL 1999-2007 where available, county-level crop acreage statistics, and state-level crop rotation statistics. The corn-soybean maps, which we call the Corn-Soy Data Layer (CSDL), are publicly hosted on Google Earth Engine and also available for download online.

5.
Nat Food ; 1(11): 729-735, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37128028

RESUMO

As climate change leads to increased frequency and severity of drought in many agricultural regions, a prominent adaptation goal is to reduce the drought sensitivity of crop yields. Yet many of the sources of average yield gains are more effective in good weather, leading to heightened drought sensitivity. Here we consider two empirical strategies for detecting changes in drought sensitivity and apply them to maize in the United States, a crop that has experienced myriad management changes including recent adoption of drought-tolerant varieties. We show that a strategy that utilizes weather-driven temporal variations in drought exposure is inconclusive because of the infrequent occurrence of substantial drought. In contrast, a strategy that exploits within-county spatial variability in drought exposure, driven primarily by differences in soil water storage capacity, reveals robust trends over time. Yield sensitivity to soil water storage increased by 55% on average across the US Corn Belt since 1999, with larger increases in drier states. Although yields have been increasing under all conditions, the cost of drought relative to good weather has also risen. These results highlight the difficulty of simultaneously raising average yields and lowering drought sensitivity.

6.
Proc Natl Acad Sci U S A ; 115(10): E2284-E2291, 2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463695

RESUMO

Climate-mediated changes in hybridization will dramatically alter the genetic diversity, adaptive capacity, and evolutionary trajectory of interbreeding species. Our ability to predict the consequences of such changes will be key to future conservation and management decisions. Here we tested through simulations how recent warming (over the course of a 32-y period) is affecting the geographic extent of a climate-mediated developmental threshold implicated in maintaining a butterfly hybrid zone (Papilio glaucus and Papilio canadensis; Lepidoptera: Papilionidae). These simulations predict a 68-km shift of this hybrid zone. To empirically test this prediction, we assessed genetic and phenotypic changes using contemporary and museum collections and document a 40-km northward shift of this hybrid zone. Interactions between the two species appear relatively unchanged during hybrid zone movement. We found no change in the frequency of hybridization, and regions of the genome that experience little to no introgression moved largely in concert with the shifting hybrid zone. Model predictions based on climate scenarios predict this hybrid zone will continue to move northward, but with substantial spatial heterogeneity in the velocity (55-144 km/1 °C), shape, and contiguity of movement. Our findings suggest that the presence of nonclimatic barriers (e.g., genetic incompatibilities) and/or nonlinear responses to climatic gradients may preserve species boundaries as the species shift. Further, we show that variation in the geography of hybrid zone movement could result in evolutionary responses that differ for geographically distinct populations spanning hybrid zones, and thus have implications for the conservation and management of genetic diversity.


Assuntos
Borboletas/genética , Mudança Climática , Ecossistema , Animais , Cruzamento , Borboletas/fisiologia , Feminino , Variação Genética , Genômica , Geografia , Hibridização Genética , Masculino , Modelos Biológicos , Museus/estatística & dados numéricos
7.
Sci Total Environ ; 566-567: 988-1001, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27344509

RESUMO

In modern agriculture, the interplay between complex physical, agricultural, and socioeconomic water use drivers must be fully understood to successfully manage water supplies on extended timescales. This is particularly evident across large portions of the High Plains Aquifer where groundwater levels have declined at unsustainable rates despite improvements in both the efficiency of water use and water productivity in agricultural practices. Improved technology and land use practices have not mitigated groundwater level declines, thus water management strategies must adapt accordingly or risk further resource loss. In this study, we analyze the water-energy-food nexus over the High Plains Aquifer as a framework to isolate the major drivers that have shaped the history, and will direct the future, of water use in modern agriculture. Based on this analysis, we conclude that future water management strategies can benefit from: (1) prioritizing farmer profit to encourage decision-making that aligns with strategic objectives, (2) management of water as both an input into the water-energy-food nexus and a key incentive for farmers, (3) adaptive frameworks that allow for short-term objectives within long-term goals, (4) innovative strategies that fit within restrictive political frameworks, (5) reduced production risks to aid farmer decision-making, and (6) increasing the political desire to conserve valuable water resources. This research sets the foundation to address water management as a function of complex decision-making trends linked to the water-energy-food nexus. Water management strategy recommendations are made based on the objective of balancing farmer profit and conserving water resources to ensure future agricultural production.

8.
Mol Ecol ; 23(11): 2686-98, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24766086

RESUMO

Local adaptation of populations could preclude or slow range expansions in response to changing climate, particularly when dispersal is limited. To investigate the differential responses of populations to changing climatic conditions, we exposed poleward peripheral and central populations of two Lepidoptera to reciprocal, common-garden climatic conditions and compared their whole-transcriptome expression. We found evidence of simple population differentiation in both species, and in the species with previously identified population structure and phenotypic local adaptation, we found several hundred genes that responded in a synchronized and localized fashion. These genes were primarily involved in energy metabolism and oxidative stress, and expression levels were most divergent between populations in the same environment in which we previously detected divergence for metabolism. We found no localized genes in the species with less population structure and for which no local adaptation was previously detected. These results challenge the assumption that species are functionally similar across their ranges and poleward peripheral populations are preadapted to warmer conditions. Rather, some taxa deserve population-level consideration when predicting the effects of climate change because they respond in genetically based, distinctive ways to changing conditions.


Assuntos
Aclimatação/genética , Mudança Climática , Genética Populacional , Lepidópteros/genética , Animais , Feminino , Expressão Gênica , Lepidópteros/classificação , Dados de Sequência Molecular , América do Norte , Dinâmica Populacional , Especificidade da Espécie , Temperatura , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA