Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Leukemia ; 34(4): 966-984, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32127639

RESUMO

The therapeutic landscape of chronic myeloid leukemia (CML) has profoundly changed over the past 7 years. Most patients with chronic phase (CP) now have a normal life expectancy. Another goal is achieving a stable deep molecular response (DMR) and discontinuing medication for treatment-free remission (TFR). The European LeukemiaNet convened an expert panel to critically evaluate and update the evidence to achieve these goals since its previous recommendations. First-line treatment is a tyrosine kinase inhibitor (TKI; imatinib brand or generic, dasatinib, nilotinib, and bosutinib are available first-line). Generic imatinib is the cost-effective initial treatment in CP. Various contraindications and side-effects of all TKIs should be considered. Patient risk status at diagnosis should be assessed with the new EUTOS long-term survival (ELTS)-score. Monitoring of response should be done by quantitative polymerase chain reaction whenever possible. A change of treatment is recommended when intolerance cannot be ameliorated or when molecular milestones are not reached. Greater than 10% BCR-ABL1 at 3 months indicates treatment failure when confirmed. Allogeneic transplantation continues to be a therapeutic option particularly for advanced phase CML. TKI treatment should be withheld during pregnancy. Treatment discontinuation may be considered in patients with durable DMR with the goal of achieving TFR.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Compostos de Anilina/uso terapêutico , Tomada de Decisão Clínica , Conferências de Consenso como Assunto , Dasatinibe/uso terapêutico , Gerenciamento Clínico , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Expressão Gênica , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/mortalidade , Expectativa de Vida/tendências , Monitorização Fisiológica , Nitrilas/uso terapêutico , Pirimidinas/uso terapêutico , Qualidade de Vida , Quinolinas/uso terapêutico , Análise de Sobrevida
2.
Clin Pharmacol ; 11: 77-92, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31372066

RESUMO

Mastocytosis is a myeloproliferative neoplasm characterized by expansion of abnormal mast cells (MCs) in various tissues, including skin, bone marrow, gastrointestinal tract, liver, spleen, or lymph nodes. Subtypes include indolent systemic mastocytosis, smoldering systemic mastocytosis and advanced systemic mastocytosis (AdvSM), a term collectively used for the three most aggressive forms of the disease: aggressive systemic mastocytosis, mast cell leukemia, and systemic mastocytosis with an associated clonal hematological non-mast cell disease (SM-AHNMD). MC activation and proliferation is physiologically controlled in part through stem cell factor (SCF) binding to its cognate receptor, KIT. Gain-of-function KIT mutations that lead to ligand-independent kinase activation are found in most SM subtypes, and the overwhelming majority of AdvSM patients harbor the KITD816V mutation. Several approved tyrosine kinase inhibitors (TKIs), such as imatinib and nilotinib, have activity against wild-type KIT but lack activity against KITD816V. Midostaurin, a broad spectrum TKI with activity against KITD816V, has a 60% clinical response rate, and is currently the only drug specifically approved for AdvSM. While this agent improves the prognosis of AdvSM patients and provides proof of principle for targeting KITD816V as a driver mutation, most responses are partial and/or not sustained, indicating that more potent and/or specific inhibitors are required. Avapritinib, a KIT and PDGFRα inhibitor, was specifically designed to inhibit KITD816V. Early results from a Phase 1 trial suggest that avapritinib has potent antineoplastic activity in AdvSM, extending to patients who failed midostaurin. Patients exhibited a rapid reduction in both symptoms as well as reductions of bone marrow MCs, serum tryptase, and KITD816V mutant allele burden. Adverse effects include expected toxicities such as myelosuppression and periorbital edema, but also cognitive impairment in some patients. Although considerable excitement about avapritinib exists, more data are needed to assess long-term responses and adverse effects of this novel TKI.

3.
Leukemia ; 32(1): 49-60, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28579617

RESUMO

Philadelphia chromosome-positive (Ph+) B-cell precursor acute lymphoblastic leukemia (ALL) expressing BCR-ABL1 oncoprotein is a major subclass of ALL with poor prognosis. BCR-ABL1-expressing leukemic cells are highly dependent on double-strand break (DSB) repair signals for their survival. Here we report that a first-in-class HDAC1,2 selective inhibitor and doxorubicin (a hyper-CVAD chemotherapy regimen component) impair DSB repair networks in Ph+ B-cell precursor ALL cells using common as well as distinct mechanisms. The HDAC1,2 inhibitor but not doxorubicin alters nucleosomal occupancy to impact chromatin structure, as revealed by MNase-Seq. Quantitative mass spectrometry of the chromatin proteome along with functional assays showed that the HDAC1,2 inhibitor and doxorubicin either alone or in combination impair the central hub of DNA repair, the Mre11-Rad51-DNA ligase 1 axis, involved in BCR-ABL1-specific DSB repair signaling in Ph+ B-cell precursor ALL cells. HDAC1,2 inhibitor and doxorubicin interfere with DISC (DNA damage-induced transcriptional silencing in cis)) or transcriptional silencing program in cis around DSB sites via chromatin remodeler-dependent and -independent mechanisms, respectively, to further impair DSB repair. HDAC1,2 inhibitor either alone or when combined with doxorubicin decreases leukemia burden in vivo in refractory Ph+ B-cell precursor ALL patient-derived xenograft mouse models. Overall, our novel mechanistic and preclinical studies together demonstrate that HDAC1,2 selective inhibition can overcome DSB repair 'addiction' and provide an effective therapeutic option for Ph+ B-cell precursor ALL.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Reparo do DNA/efeitos dos fármacos , Proteínas de Fusão bcr-abl/metabolismo , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 2/antagonistas & inibidores , Cromossomo Filadélfia/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo
7.
Leukemia ; 30(7): 1493-501, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27044711

RESUMO

Chronic myeloid leukemia (CML) patients who relapse on imatinib due to acquired ABL1 kinase domain mutations are successfully treated with second-generation ABL1-tyrosine kinase inhibitors (ABL-TKIs) such as dasatinib, nilotinib or ponatinib. However, ~40% of relapsed patients have uncharacterized BCR-ABL1 kinase-independent mechanisms of resistance. To identify these mechanisms of resistance and potential treatment options, we generated ABL-TKI-resistant K562 cells through prolonged sequential exposure to imatinib and dasatinib. Dual-resistant K562 cells lacked BCR-ABL1 kinase domain mutations, but acquired other genomic aberrations that were characterized by next-generation sequencing and copy number analyses. Proteomics showed that dual-resistant cells had elevated levels of FOXO1, phospho-ERK and BCL-2, and that dasatinib no longer inhibited substrates of the PI3K/AKT pathway. In contrast to parental cells, resistant cells were sensitive to growth inhibition and apoptosis induced by the class I PI3K inhibitor, GDC-0941 (pictilisib), which also induced FOXO1 nuclear translocation. FOXO1 was elevated in a subset of primary specimens from relapsed CML patients lacking BCR-ABL1 kinase domain mutations, and these samples were responsive to GDC-0941 treatment ex vivo. We conclude that elevated FOXO1 contributes to BCR-ABL1 kinase-independent resistance experienced by these CML patients and that PI3K inhibition coupled with BCR-ABL1 inhibition may represent a novel therapeutic approach.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteína Forkhead Box O1/fisiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dasatinibe/farmacologia , Tolerância a Medicamentos , Proteína Forkhead Box O1/análise , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Humanos , Mesilato de Imatinib/farmacologia , Indazóis/farmacologia , Células K562 , Inibidores de Fosfoinositídeo-3 Quinase , Sulfonamidas/farmacologia , Células Tumorais Cultivadas
9.
Leukemia ; 30(4): 906-13, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26648538

RESUMO

Chronic myelomonocytic leukemia (CMML) is a hematologic malignancy nearly confined to the elderly. Previous studies to determine incidence and prognostic significance of somatic mutations in CMML have relied on candidate gene sequencing, although an unbiased mutational search has not been conducted. As many of the genes commonly mutated in CMML were recently associated with age-related clonal hematopoiesis (ARCH) and aged hematopoiesis is characterized by a myelomonocytic differentiation bias, we hypothesized that CMML and aged hematopoiesis may be closely related. We initially established the somatic mutation landscape of CMML by whole exome sequencing followed by gene-targeted validation. Genes mutated in ⩾10% of patients were SRSF2, TET2, ASXL1, RUNX1, SETBP1, KRAS, EZH2, CBL and NRAS, as well as the novel CMML genes FAT4, ARIH1, DNAH2 and CSMD1. Most CMML patients (71%) had mutations in ⩾2 ARCH genes and 52% had ⩾7 mutations overall. Higher mutation burden was associated with shorter survival. Age-adjusted population incidence and reported ARCH mutation rates are consistent with a model in which clinical CMML ensues when a sufficient number of stochastically acquired age-related mutations has accumulated, suggesting that CMML represents the leukemic conversion of the myelomonocytic-lineage-biased aged hematopoietic system.


Assuntos
Biomarcadores Tumorais/genética , Hematopoese/genética , Leucemia Mielomonocítica Crônica/genética , Mutação/genética , Proteínas/genética , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Exoma , Feminino , Seguimentos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia Mielomonocítica Crônica/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Proteínas de Ligação a RNA , Taxa de Sobrevida , Adulto Jovem
10.
Leukemia ; 29(12): 2328-37, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26202934

RESUMO

Activation of nuclear ß-catenin and expression of its transcriptional targets promotes chronic myeloid leukemia (CML) progression, tyrosine kinase inhibitor (TKI) resistance, and leukemic stem cell self-renewal. We report that nuclear ß-catenin has a role in leukemia cell-intrinsic but not -extrinsic BCR-ABL1 kinase-independent TKI resistance. Upon imatinib inhibition of BCR-ABL1 kinase activity, ß-catenin expression was maintained in intrinsically resistant cells grown in suspension culture and sensitive cells cultured in direct contact (DC) with bone marrow (BM) stromal cells. Thus, TKI resistance uncouples ß-catenin expression from BCR-ABL1 kinase activity. In ß-catenin reporter assays, intrinsically resistant cells showed increased transcriptional activity versus parental TKI-sensitive controls, and this was associated with restored expression of ß-catenin target genes. In contrast, DC with BM stromal cells promoted TKI resistance, but had little effects on Lef/Tcf reporter activity and no consistent effects on cytoplasmic ß-catenin levels, arguing against a role for ß-catenin in extrinsic TKI resistance. N-cadherin or H-cadherin blocking antibodies abrogated DC-based resistance despite increasing Lef/Tcf reporter activity, suggesting that factors other than ß-catenin contribute to extrinsic, BM-derived TKI resistance. Our data indicate that, while nuclear ß-catenin enhances survival of intrinsically TKI-resistant CML progenitors, it is not required for extrinsic resistance mediated by the BM microenvironment.


Assuntos
Proteínas de Fusão bcr-abl/fisiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , beta Catenina/fisiologia , Caderinas/fisiologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Mesilato de Imatinib/uso terapêutico , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Wnt/fisiologia , Proteína Wnt-5a
11.
Leukemia ; 29(8): 1668-75, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25721898

RESUMO

Targeted therapy of chronic myeloid leukemia (CML) is currently based on small-molecule inhibitors that directly bind the tyrosine kinase domain of BCR-ABL1. This strategy has generally been successful, but is subject to drug resistance because of point mutations in the kinase domain. Kinase activity requires transactivation of BCR-ABL1 following an oligomerization event, which is mediated by the coiled-coil (CC) domain at the N terminus of the protein. Here, we describe a rationally engineered mutant version of the CC domain, called CC(mut3), which interferes with BCR-ABL1 oligomerization and promotes apoptosis in BCR-ABL1-expressing cells, regardless of kinase domain mutation status. CC(mut3) exhibits strong proapoptotic and antiproliferative activity in cell lines expressing native BCR-ABL1, single kinase domain mutant BCR-ABL1 (E255V and T315I) or compound-mutant BCR-ABL1 (E255V/T315I). Moreover, CC(mut3) inhibits colony formation by primary CML CD34(+) cells ex vivo, including a sample expressing the T315I mutant. These data suggest that targeting BCR-ABL1 with CC mutants may provide a novel alternative strategy for treating patients with resistance to current targeted therapies.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/química , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Mutação Puntual/genética , Multimerização Proteica/genética , Proteínas Tirosina Quinases/antagonistas & inibidores , Apoptose , Proliferação de Células , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Estrutura Terciária de Proteína , Células Tumorais Cultivadas , Ensaio Tumoral de Célula-Tronco
14.
N Engl J Med ; 369(19): 1783-96, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24180494

RESUMO

BACKGROUND: Ponatinib is a potent oral tyrosine kinase inhibitor of unmutated and mutated BCR-ABL, including BCR-ABL with the tyrosine kinase inhibitor-refractory threonine-to-isoleucine mutation at position 315 (T315I). We conducted a phase 2 trial of ponatinib in patients with chronic myeloid leukemia (CML) or Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph-positive ALL). METHODS: We enrolled 449 heavily pretreated patients who had CML or Ph-positive ALL with resistance to or unacceptable side effects from dasatinib or nilotinib or who had the BCR-ABL T315I mutation. Ponatinib was administered at an initial dose of 45 mg once daily. The median follow-up was 15 months. RESULTS: Among 267 patients with chronic-phase CML, 56% had a major cytogenetic response (51% of patients with resistance to or unacceptable side effects from dasatinib or nilotinib and 70% of patients with the T315I mutation), 46% had a complete cytogenetic response (40% and 66% in the two subgroups, respectively), and 34% had a major molecular response (27% and 56% in the two subgroups, respectively). Responses were observed regardless of the baseline BCR-ABL kinase domain mutation status and were durable; the estimated rate of a sustained major cytogenetic response of at least 12 months was 91%. No single BCR-ABL mutation conferring resistance to ponatinib was detected. Among 83 patients with accelerated-phase CML, 55% had a major hematologic response and 39% had a major cytogenetic response. Among 62 patients with blast-phase CML, 31% had a major hematologic response and 23% had a major cytogenetic response. Among 32 patients with Ph-positive ALL, 41% had a major hematologic response and 47% had a major cytogenetic response. Common adverse events were thrombocytopenia (in 37% of patients), rash (in 34%), dry skin (in 32%), and abdominal pain (in 22%). Serious arterial thrombotic events were observed in 9% of patients; these events were considered to be treatment-related in 3%. A total of 12% of patients discontinued treatment because of an adverse event. CONCLUSIONS: Ponatinib had significant antileukemic activity across categories of disease stage and mutation status. (Funded by Ariad Pharmaceuticals and others; PACE ClinicalTrials.gov number, NCT01207440 .).


Assuntos
Imidazóis/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Piridazinas/uso terapêutico , Trombose/induzido quimicamente , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imidazóis/efeitos adversos , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/efeitos adversos , Piridazinas/efeitos adversos , Trombocitopenia/induzido quimicamente , Adulto Jovem
16.
Br J Cancer ; 102(10): 1474-82, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20407438

RESUMO

BACKGROUND: Imatinib is a direct and potent inhibitor of the constitutively active tyrosine kinase, breakpoint cluster region-Abelson (Bcr-Abl), which is central to the pathogenesis of chronic myeloid leukaemia (CML) patients. As such, imatinib has become the front-line treatment for CML patients. However, the recent emergence of imatinib resistance, commonly associated with point mutations within the kinase domain, has led to the search for alternative drug treatments and combination therapies for CML. METHODS: In this report, we analyse the effects of representative members of the novel pro-apoptotic microtubule depolymerising pyrrolo-1,5-benzoxazepines or PBOX compounds on chemotherapy-refractory CML cells using a series of Bcr-Abl mutant cell lines, clinical ex vivo patient samples and an in vivo mouse model. RESULTS: The PBOX compounds potently reduce cell viability in cells expressing the E225K and H396P mutants as well as the highly resistant T315I mutant. The PBOX compounds also induce apoptosis in primary CML samples including those resistant to imatinib. We also show for the first time, the in vivo efficacy of the pro-apoptotic PBOX compound, PBOX-6, in a CML mouse model of the T315I Bcr-Abl mutant. CONCLUSION: Results from this study highlight the potential of these novel series of PBOX compounds as an effective therapy against CML.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Oxazepinas/farmacologia , Pirróis/farmacologia , Adulto , Idoso , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Separação Celular , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Citometria de Fluxo , Genes abl/genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Mutação
20.
Leukemia ; 22(7): 1354-60, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18548107

RESUMO

Bcr-Abl, a constitutively active tyrosine kinase, is the cause of chronic myeloid leukemia (CML) and a subset of acute lymphoblastic leukemias (ALL). Bruton's tyrosine kinase (BTK), a member of the Tec family of tyrosine kinases with a crucial role in B-cell development, is consistently tyrosine phosphorylated in Bcr-Abl expressing murine pre B cells. BTK has been implicated in Bcr-Abl-mediated B-cell transformation and resistance to imatinib, implying that inhibiting BTK may be therapeutically beneficial. We decided to test whether BTK is a critical node in Bcr-Abl transformation and potential drug target in imatinib-resistant Bcr-Abl-positive cells. We depleted BTK in Ba/F3 and 32D cells expressing native and kinase domain (KD) mutant (E255K and T315I) Bcr-Abl, using shRNA. BTK levels were reduced to <10% of controls. However, no differences in viability and cell proliferation were observed and the response to imatinib was not altered. Consistent with this, proliferation and viability were unaffected by inhibition of BTK with reversible (PC-005) and irreversible (PCI-31523) small molecule inhibitors. Lastly, BTK inhibition did not affect the ability of Bcr-Abl to transform primary murine hematopoietic cells in colony forming and B-cell transformation assays. Collectively this data argues against a critical role for BTK in Bcr-Abl-mediated leukemogenesis.


Assuntos
Transformação Celular Neoplásica , Proteínas de Fusão bcr-abl/fisiologia , Leucemia/etiologia , Linfócitos/patologia , Células Mieloides/patologia , Proteínas Tirosina Quinases/fisiologia , Tirosina Quinase da Agamaglobulinemia , Animais , Benzamidas , Células Cultivadas , Humanos , Mesilato de Imatinib , Camundongos , Camundongos Endogâmicos BALB C , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...