Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nat Med ; 30(2): 443-454, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38321220

RESUMO

Compromised vascular endothelial barrier function is a salient feature of diabetic complications such as sight-threatening diabetic macular edema (DME). Current standards of care for DME manage aspects of the disease, but require frequent intravitreal administration and are poorly effective in large subsets of patients. Here we provide evidence that an elevated burden of senescent cells in the retina triggers cardinal features of DME pathology and conduct an initial test of senolytic therapy in patients with DME. In cell culture models, sustained hyperglycemia provoked cellular senescence in subsets of vascular endothelial cells displaying perturbed transendothelial junctions associated with poor barrier function and leading to micro-inflammation. Pharmacological elimination of senescent cells in a mouse model of DME reduces diabetes-induced retinal vascular leakage and preserves retinal function. We then conducted a phase 1 single ascending dose safety study of UBX1325 (foselutoclax), a senolytic small-molecule inhibitor of BCL-xL, in patients with advanced DME for whom anti-vascular endothelial growth factor therapy was no longer considered beneficial. The primary objective of assessment of safety and tolerability of UBX1325 was achieved. Collectively, our data suggest that therapeutic targeting of senescent cells in the diabetic retina with a BCL-xL inhibitor may provide a long-lasting, disease-modifying intervention for DME. This hypothesis will need to be verified in larger clinical trials. ClinicalTrials.gov identifier: NCT04537884 .


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Edema Macular , Animais , Camundongos , Humanos , Edema Macular/tratamento farmacológico , Edema Macular/etiologia , Retinopatia Diabética/tratamento farmacológico , Inibidores da Angiogênese/uso terapêutico , Células Endoteliais , Senoterapia , Senescência Celular
2.
J Neuroinflammation ; 20(1): 145, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344842

RESUMO

Cellular adaptation to low oxygen tension triggers primitive pathways that ensure proper cell function. Conditions of hypoxia and low glucose are characteristic of injured tissues and hence successive waves of inflammatory cells must be suited to function under low oxygen tension and metabolic stress. While Hypoxia-Inducible Factor (HIF)-1α has been shown to be essential for the inflammatory response of myeloid cells by regulating the metabolic switch to glycolysis, less is known about how HIF1α is triggered in inflammation. Here, we demonstrate that cells of the innate immune system require activity of the inositol-requiring enzyme 1α (IRE1α/XBP1) axis in order to initiate HIF1α-dependent production of cytokines such as IL1ß, IL6 and VEGF-A. Knockout of either HIF1α or IRE1α in myeloid cells ameliorates vascular phenotypes in a model of retinal pathological angiogenesis driven by sterile inflammation. Thus, pathways associated with ER stress, in partnership with HIF1α, may co-regulate immune adaptation to low oxygen.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/genética , Hipóxia , Oxigênio/metabolismo , Células Mieloides/metabolismo , Inflamação/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia
3.
Science ; 379(6627): 45-62, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36603072

RESUMO

Age-related macular degeneration is a prevalent neuroinflammatory condition and a major cause of blindness driven by genetic and environmental factors such as obesity. In diseases of aging, modifiable factors can be compounded over the life span. We report that diet-induced obesity earlier in life triggers persistent reprogramming of the innate immune system, lasting long after normalization of metabolic abnormalities. Stearic acid, acting through Toll-like receptor 4 (TLR4), is sufficient to remodel chromatin landscapes and selectively enhance accessibility at binding sites for activator protein-1 (AP-1). Myeloid cells show less oxidative phosphorylation and shift to glycolysis, ultimately leading to proinflammatory cytokine transcription, aggravation of pathological retinal angiogenesis, and neuronal degeneration associated with loss of visual function. Thus, a past history of obesity reprograms mononuclear phagocytes and predisposes to neuroinflammation.


Assuntos
Memória Epigenética , Imunidade Inata , Degeneração Macular , Doenças Neuroinflamatórias , Obesidade , Animais , Camundongos , Citocinas/genética , Imunidade Inata/genética , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/imunologia , Obesidade/genética , Fagócitos/imunologia , Transcrição Gênica , Degeneração Macular/genética , Degeneração Macular/imunologia , Reprogramação Celular/genética , Receptor 4 Toll-Like/genética
4.
Sci Rep ; 11(1): 15767, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344941

RESUMO

The beneficial effects of brown adipose tissue (BAT) on obesity and associated metabolic diseases are mediated through its capacity to dissipate energy as heat. While immune cells, such as tissue-resident macrophages, are known to influence adipose tissue homeostasis, relatively little is known about their contribution to BAT function. Here we report that neuropilin-1 (NRP1), a multiligand single-pass transmembrane receptor, is highly expressed in BAT-resident macrophages. During diet-induced obesity (DIO), myeloid-resident NRP1 influences interscapular BAT mass, and consequently vascular morphology, innervation density and ultimately core body temperature during cold exposure. Thus, NRP1-expressing myeloid cells contribute to the BAT homeostasis and potentially its thermogenic function in DIO.


Assuntos
Tecido Adiposo Marrom/fisiologia , Homeostase , Células Mieloides/metabolismo , Neuropilina-1/fisiologia , Obesidade/prevenção & controle , Termogênese , Animais , Dieta/efeitos adversos , Metabolismo Energético , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia
5.
EMBO Mol Med ; 13(5): e11754, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33876574

RESUMO

Age-related macular degeneration (AMD) in its various forms is a leading cause of blindness in industrialized countries. Here, we provide evidence that ligands for neuropilin-1 (NRP1), such as Semaphorin 3A and VEGF-A, are elevated in the vitreous of patients with AMD at times of active choroidal neovascularization (CNV). We further demonstrate that NRP1-expressing myeloid cells promote and maintain CNV. Expression of NRP1 on cells of myeloid lineage is critical for mitigating production of inflammatory factors such as IL6 and IL1ß. Therapeutically trapping ligands of NRP1 with an NRP1-derived trap reduces CNV. Collectively, our findings identify a role for NRP1-expressing myeloid cells in promoting pathological angiogenesis during CNV and introduce a therapeutic approach to counter neovascular AMD.


Assuntos
Neovascularização de Coroide , Degeneração Macular Exsudativa , Inibidores da Angiogênese , Humanos , Inflamação , Neuropilina-1/genética , Fator A de Crescimento do Endotélio Vascular , Acuidade Visual
6.
Cell Metab ; 33(4): 818-832.e7, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33548171

RESUMO

Attenuating pathological angiogenesis in diseases characterized by neovascularization such as diabetic retinopathy has transformed standards of care. Yet little is known about the molecular signatures discriminating physiological blood vessels from their diseased counterparts, leading to off-target effects of therapy. We demonstrate that in contrast to healthy blood vessels, pathological vessels engage pathways of cellular senescence. Senescent (p16INK4A-expressing) cells accumulate in retinas of patients with diabetic retinopathy and during peak destructive neovascularization in a mouse model of retinopathy. Using either genetic approaches that clear p16INK4A-expressing cells or small molecule inhibitors of the anti-apoptotic protein BCL-xL, we show that senolysis suppresses pathological angiogenesis. Single-cell analysis revealed that subsets of endothelial cells with senescence signatures and expressing Col1a1 are no longer detected in BCL-xL-inhibitor-treated retinas, yielding a retina conducive to physiological vascular repair. These findings provide mechanistic evidence supporting the development of BCL-xL inhibitors as potential treatments for neovascular retinal disease.


Assuntos
Senescência Celular , Doenças Retinianas/patologia , Proteína bcl-X/metabolismo , Animais , Apoptose/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Flavonóis/química , Flavonóis/farmacologia , Flavonóis/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neovascularização Patológica , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/metabolismo , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia , Proteína bcl-X/antagonistas & inibidores
7.
Aging (Albany NY) ; 12(24): 24836-24852, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33361521

RESUMO

MicroRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression. We recently demonstrated that levels of miR-106b were significantly decreased in the vitreous and plasma of patients with neovascular age-related macular degeneration (AMD). Here we show that expression of the miR-106b-25 cluster is negatively regulated by the unfolded protein response pathway of protein kinase RNA-like ER kinase (PERK) in a mouse model of neovascular AMD. A reduction in levels of miR-106b triggers vascular growth both in vivo and in vitro by inducing production of pro-angiogenic factors. We demonstrate that therapeutic delivery of miR-106b to the retina with lentiviral vectors protects against aberrant retinal angiogenesis in two distinct mouse models of pathological retinal neovascularization. Results from this study suggest that miRNAs such as miR-106b have the potential to be used as multitarget therapeutics for conditions characterized by pathological retinal angiogenesis.


Assuntos
Neovascularização de Coroide/genética , Degeneração Macular/genética , MicroRNAs/genética , Neovascularização Retiniana/genética , Animais , Linhagem Celular , Movimento Celular/genética , Neovascularização de Coroide/patologia , Retinopatia Diabética , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/genética , Células Endoteliais , Queimaduras Oculares , Humanos , Terapia a Laser , Degeneração Macular/patologia , Camundongos , Oxigênio/toxicidade , Neovascularização Retiniana/patologia , Retinopatia da Prematuridade , Resposta a Proteínas não Dobradas/genética , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
8.
Science ; 369(6506)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32820093

RESUMO

In developed countries, the leading causes of blindness such as diabetic retinopathy are characterized by disorganized vasculature that can become fibrotic. Although many such pathological vessels often naturally regress and spare sight-threatening complications, the underlying mechanisms remain unknown. Here, we used orthogonal approaches in human patients with proliferative diabetic retinopathy and a mouse model of ischemic retinopathies to identify an unconventional role for neutrophils in vascular remodeling during late-stage sterile inflammation. Senescent vasculature released a secretome that attracted neutrophils and triggered the production of neutrophil extracellular traps (NETs). NETs ultimately cleared diseased endothelial cells and remodeled unhealthy vessels. Genetic or pharmacological inhibition of NETosis prevented the regression of senescent vessels and prolonged disease. Thus, clearance of senescent retinal blood vessels leads to reparative vascular remodeling.


Assuntos
Envelhecimento/patologia , Retinopatia Diabética/patologia , Armadilhas Extracelulares/imunologia , Vasos Retinianos/patologia , Animais , Senescência Celular , Retinopatia Diabética/imunologia , Modelos Animais de Doenças , Células Endoteliais/imunologia , Células Endoteliais/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Vasos Retinianos/imunologia
9.
Angiogenesis ; 23(2): 145-157, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31598898

RESUMO

The Dll4-Notch-signaling pathway regulates capillary sprouting via the specification of endothelial tip cells. While VEGF is a potent inducer of Dll4 expression, the intracellular mediators that stimulate its expression remain poorly defined. The protein tyrosine phosphatase PTPRJ/DEP-1 is required for angiogenesis in normal or pathological contexts through its modulation of VEGF signaling. Here, we show that in DEP-1 KO mice, retinas at post-natal day 5 show enlarged blood vessels, as well as an increased number of tip cells and vessel branching points at the migrating front of the vascular plexus. Consistent with these observations, the proliferation of endothelial cells is increased in the retinas of DEP-1 KO mice, as revealed by phospho-histone H3 staining, and increased phosphorylation of ERK1/2 in HUVECs transfected with DEP-1 siRNA. The expression of Dll4 was decreased in retinas of DEP-1 KO mice and was associated with decreased Notch activation. Mechanistically, reduced Dll4 expression in the absence of DEP-1 was correlated with the inhibition of the Src/Akt/ß-Catenin-signaling pathway in HUVECs. Conversely, overexpression of WT DEP-1 in cultured endothelial cells, but not of mutants unable to activate Src-dependent signaling, promoted Dll4 expression. Inhibition of Src, Akt, and ß-catenin transcriptional activity, leading to the inhibition of Dll4 expression, further suggested that their activation through a DEP-1-dependent pathway was required to promote Dll4 expression in VEGF-stimulated endothelial cells. Altogether, these data demonstrate that DEP-1, via Akt and ß-catenin, is a significant promoter of the VEGF-induced Dll4-Notch pathway, and can contribute to the regulation of the tip and stalk cell phenotypes of endothelial cells.


Assuntos
Células Endoteliais , Neovascularização Fisiológica , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores , Receptores Notch , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Células Endoteliais/metabolismo , Camundongos , Neovascularização Fisiológica/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , beta Catenina/metabolismo
10.
Proc Natl Acad Sci U S A ; 116(10): 4538-4547, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30787185

RESUMO

Diabetic macular edema is a major complication of diabetes resulting in loss of central vision. Although heightened vessel leakiness has been linked to glial and neuronal-derived factors, relatively little is known on the mechanisms by which mature endothelial cells exit from a quiescent state and compromise barrier function. Here we report that endothelial NOTCH1 signaling in mature diabetic retinas contributes to increased vascular permeability. By providing both human and mouse data, we show that NOTCH1 ligands JAGGED1 and DELTA LIKE-4 are up-regulated secondary to hyperglycemia and activate both canonical and rapid noncanonical NOTCH1 pathways that ultimately disrupt endothelial adherens junctions in diabetic retinas by causing dissociation of vascular endothelial-cadherin from ß-catenin. We further demonstrate that neutralization of NOTCH1 ligands prevents diabetes-induced retinal edema. Collectively, these results identify a fundamental process in diabetes-mediated vascular permeability and provide translational rational for targeting the NOTCH pathway (primarily JAGGED1) in conditions characterized by compromised vascular barrier function.


Assuntos
Permeabilidade Capilar , Retinopatia Diabética/patologia , Receptor Notch1/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Proteínas de Ligação ao Cálcio/biossíntese , Ativação Enzimática , Hiperglicemia/metabolismo , Proteína Jagged-1/biossíntese , Camundongos , Óxido Nítrico/biossíntese , Vasos Retinianos/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Quinases da Família src/metabolismo
11.
Glia ; 66(10): 2079-2093, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30051920

RESUMO

Nogo-A is a potent glial-derived inhibitor of axon growth in the injured CNS and acts as a negative regulator of developmental angiogenesis by inhibiting vascular endothelial cell migration. However, its function in pathological angiogenesis has never been studied after ischemic injury in the CNS. Using the mouse model of oxygen-induced retinopathy (OIR) which yields defined zones of retinal ischemia, our goal was to investigate the role of Nogo-A in vascular regeneration. We demonstrate a marked upregulation of the Nogo-A receptor sphingosine 1-phosphate receptor 2 in blood vessels following OIR, while Nogo-A is abundantly expressed in surrounding glial cells. Acute inhibition of Nogo-A with function-blocking antibody 11C7 significantly improved vascular regeneration and consequently prevented pathological pre-retinal angiogenesis. Ultimately, inhibition of Nogo-A led to restoration of retinal function as determined by electrophysiological response of retinal cells to light stimulation. Our data suggest that anti-Nogo-A antibody may protect neuronal cells from ischemic damage by accelerating blood vessel repair in the CNS. Targeting Nogo-A by immunotherapy may improve CNS perfusion after vascular injuries.


Assuntos
Isquemia/metabolismo , Neovascularização Fisiológica/fisiologia , Proteínas Nogo/metabolismo , Regeneração/fisiologia , Doenças Retinianas/metabolismo , Vasos Retinianos/metabolismo , Indutores da Angiogênese/farmacologia , Animais , Modelos Animais de Doenças , Isquemia/tratamento farmacológico , Isquemia/patologia , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Proteínas Nogo/antagonistas & inibidores , Proteínas Nogo/imunologia , Receptores de Lisoesfingolipídeo/metabolismo , Regeneração/efeitos dos fármacos , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/patologia , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/patologia , Receptores de Esfingosina-1-Fosfato , Visão Ocular/efeitos dos fármacos , Visão Ocular/fisiologia
12.
Sci Immunol ; 3(21)2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549139

RESUMO

Obesity gives rise to metabolic complications by mechanisms that are poorly understood. Although chronic inflammatory signaling in adipose tissue is typically associated with metabolic deficiencies linked to excessive weight gain, we identified a subset of neuropilin-1 (NRP1)-expressing myeloid cells that accumulate in adipose tissue and protect against obesity and metabolic syndrome. Ablation of NRP1 in macrophages compromised lipid uptake in these cells, which reduced substrates for fatty acid ß-oxidation and shifted energy metabolism of these macrophages toward a more inflammatory glycolytic metabolism. Conditional deletion of NRP1 in LysM Cre-expressing cells leads to inadequate adipose vascularization, accelerated weight gain, and reduced insulin sensitivity even independent of weight gain. Transfer of NRP1+ hematopoietic cells improved glucose homeostasis, resulting in the reversal of a prediabetic phenotype. Our findings suggest a pivotal role for adipose tissue-resident NRP1+-expressing macrophages in driving healthy weight gain and maintaining glucose tolerance.


Assuntos
Tecido Adiposo/metabolismo , Macrófagos/metabolismo , Neuropilina-1/metabolismo , Animais , Síndrome Metabólica/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/metabolismo
13.
Sci Rep ; 8(1): 3990, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29507344

RESUMO

The cytokines CLCF1 and CNTF are ligands for the CNTF receptor and the apolipoprotein E (ApoE) receptor sortilin. Both share structural similarities with the N-terminal domain of ApoE, known to bind CNTF. We therefore evaluated whether ApoE or ApoE-containing lipoproteins interact with CLCF1 and regulate its activity. We observed that CLCF1 forms complexes with the three major isoforms of ApoE in co-immunoprecipitation and proximity assays. FPLC analysis of mouse and human sera mixed with CLCF1 revealed that CLCF1 co-purifies with plasma lipoproteins. Studies with sera from ApoE-/- mice indicate that ApoE is not required for CLCF1-lipoprotein interactions. VLDL- and LDL-CLCF1 binding was confirmed using proximity and ligand blots assays. CLCF1-induced STAT3 phosphorylation was significantly reduced when the cytokine was complexed with VLDL. Physiological relevance of our findings was asserted in a mouse model of oxygen-induced retinopathy, where the beneficial anti-angiogenic properties of CLCF1 were abrogated when co-administrated with VLDL, indicating, that CLCF1 binds purified lipoproteins or lipoproteins in physiological fluids such as serum and behave as a "lipocytokine". Albeit it is clear that lipoproteins modulate CLCF1 activity, it remains to be determined whether lipoprotein binding directly contributes to its neurotrophic function and its roles in metabolic regulation.


Assuntos
Citocinas/metabolismo , Lipoproteínas VLDL/metabolismo , Animais , Apolipoproteínas E/metabolismo , Humanos , Lipoproteínas LDL/metabolismo , Camundongos Endogâmicos C57BL , Fosforilação , Ligação Proteica , Doenças Retinianas/metabolismo , Fator de Transcrição STAT3/metabolismo
14.
EMBO Mol Med ; 8(12): 1366-1379, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27861126

RESUMO

Age-related macular degeneration in its neovascular form (NV AMD) is the leading cause of vision loss among adults above the age of 60. Epidemiological data suggest that in men, overall abdominal obesity is the second most important environmental risk factor after smoking for progression to late-stage NV AMD To date, the mechanisms that underscore this observation remain ill-defined. Given the impact of high-fat diets on gut microbiota, we investigated whether commensal microbes influence the evolution of AMD Using mouse models of NV AMD, microbiotal transplants, and other paradigms that modify the gut microbiome, we uncoupled weight gain from confounding factors and demonstrate that high-fat diets exacerbate choroidal neovascularization (CNV) by altering gut microbiota. Gut dysbiosis leads to heightened intestinal permeability and chronic low-grade inflammation characteristic of inflammaging with elevated production of IL-6, IL-1ß, TNF-α, and VEGF-A that ultimately aggravate pathological angiogenesis.


Assuntos
Neovascularização de Coroide/patologia , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Degeneração Macular/patologia , Neovascularização Patológica , Obesidade/complicações , Animais , Citocinas/sangue , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Disbiose/etiologia , Transplante de Microbiota Fecal , Inflamação/patologia , Degeneração Macular/epidemiologia , Camundongos , Obesidade/patologia
15.
Sci Transl Med ; 8(362): 362ra144, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27797960

RESUMO

Pathological angiogenesis is the hallmark of diseases such as cancer and retinopathies. Although tissue hypoxia and inflammation are recognized as central drivers of vessel growth, relatively little is known about the process that bridges the two. In a mouse model of ischemic retinopathy, we found that hypoxic regions of the retina showed only modest rates of apoptosis despite severely compromised metabolic supply. Using transcriptomic analysis and inducible loss-of-function genetics, we demonstrated that ischemic retinal cells instead engage the endoplasmic reticulum stress inositol-requiring enzyme 1α (IRE1α) pathway that, through its endoribonuclease activity, induces a state of senescence in which cells adopt a senescence-associated secretory phenotype (SASP). We also detected SASP-associated cytokines (plasminogen activator inhibitor 1, interleukin-6, interleukin-8, and vascular endothelial growth factor) in the vitreous humor of patients suffering from proliferative diabetic retinopathy. Therapeutic inhibition of the SASP through intravitreal delivery of metformin or interference with effectors of senescence (semaphorin 3A or IRE1α) in mice reduced destructive retinal neovascularization in vivo. We conclude that the SASP contributes to pathological vessel growth, with ischemic retinal cells becoming prematurely senescent and secreting inflammatory cytokines that drive paracrine senescence, exacerbate destructive angiogenesis, and hinder reparative vascular regeneration. Reversal of this process may be therapeutically beneficial.


Assuntos
Senescência Celular , Retinopatia Diabética/sangue , Neovascularização Patológica , Vasos Retinianos/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Citocinas/metabolismo , Retinopatia Diabética/fisiopatologia , Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/química , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Retina/patologia , Neovascularização Retiniana , Fator A de Crescimento do Endotélio Vascular/metabolismo , Vitrectomia
16.
J Clin Invest ; 126(8): 3006-22, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27400127

RESUMO

Diabetic retinopathy (DR) is a major complication of diabetes and a leading cause of blindness in the working-age population. Impaired blood-retinal barrier function leads to macular edema that is closely associated with the deterioration of central vision. We previously demonstrated that the neuronal guidance cue netrin-1 activates a program of reparative angiogenesis in microglia within the ischemic retina. Here, we provide evidence in both vitreous humor of diabetic patients and in retina of a murine model of diabetes that netrin-1 is metabolized into a bioactive fragment corresponding to domains VI and V of the full-length molecule. In contrast to the protective effects of full-length netrin-1 on retinal microvasculature, the VI-V fragment promoted vascular permeability through the uncoordinated 5B (UNC5B) receptor. The collagenase matrix metalloprotease 9 (MMP-9), which is increased in patients with diabetic macular edema, was capable of cleaving netrin-1 into the VI-V fragment. Thus, MMP-9 may release netrin-1 fragments from the extracellular matrix and facilitate diffusion. Nonspecific inhibition of collagenases or selective inhibition of MMP-9 decreased pathological vascular permeability in a murine model of diabetic retinal edema. This study reveals that netrin-1 degradation products are capable of modulating vascular permeability, suggesting that these fragments are of potential therapeutic interest for the treatment of DR.


Assuntos
Permeabilidade Capilar , Retinopatia Diabética/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Barreira Hematorretiniana , Estudos de Casos e Controles , Diabetes Mellitus Experimental , Retinopatia Diabética/genética , Modelos Animais de Doenças , Humanos , Edema Macular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Pessoa de Meia-Idade , Fatores de Crescimento Neural/genética , Netrina-1 , Domínios Proteicos , Retina/metabolismo , Estreptozocina , Proteínas Supressoras de Tumor/genética
17.
Invest Ophthalmol Vis Sci ; 57(4): 1530-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27035626

RESUMO

PURPOSE: Neuropilin-1 (NRP-1) is a transmembrane receptor that is critical for vascular development within the central nervous system (CNS). It binds and influences signaling of several key angiogenic factors, such as VEGF-165, semaphorin 3A, platelet derived growth factor, and more. Neuropilin-1 is expressed by neurons and endothelial cells as well as a subpopulation of proangiogenic macrophages/microglia that are thought to interact with endothelial tip cells to promote vascular anastomosis during brain vascularization. We previously demonstrated a significant role for NRP-1 in macrophage chemotaxis and showed that NRP-1-expressing microglia are major contributors to pathologic retinal angiogenesis. Given this influence on CNS angiogenesis, we now investigated the involvement of microglia-resident NRP-1 in developmental retinal vascularization. METHODS: We followed NRP-1 expressing microglia during retinal development. We used LysM-cre myeloid lineage-driver cre mice to reduce expression of NRP-1 in retinal myeloid-derived cells and performed a comprehensive morphometric analysis of retinal vasculature during development. RESULTS: We provide evidence that NRP-1+ microglia are present throughout the retina during vascular development with a preference for the non-vascularized retina. Using LysM-Cre/Nrp1(fl/fl) mice, we reduced NRP-1 expression by ~65% in retinal microglia and demonstrate that deficiency in NRP-1 in these microglia does not impair retinal angiogenesis. CONCLUSIONS: Our data draw a dichotomous role for NRP-1 in cells of myeloid lineage where it is dispensable for adequate retinal developmental vascularization yet obligate for pathologic retinal angiogenesis.


Assuntos
Microglia/fisiologia , Neovascularização Fisiológica/fisiologia , Neuropilina-1/metabolismo , Vasos Retinianos/fisiologia , Animais , Animais Recém-Nascidos , Proteínas de Bactérias/metabolismo , Endotélio Vascular , Feminino , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Corantes Fluorescentes/metabolismo , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Morfogênese/fisiologia , Células Mieloides/metabolismo , Transdução de Sinais
18.
J Clin Invest ; 124(11): 4807-22, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25271625

RESUMO

Immunological activity in the CNS is largely dependent on an innate immune response and is heightened in diseases, such as diabetic retinopathy, multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's disease. The molecular dynamics governing immune cell recruitment to sites of injury and disease in the CNS during sterile inflammation remain poorly defined. Here, we identified a subset of mononuclear phagocytes (MPs) that responds to local chemotactic cues that are conserved among central neurons, vessels, and immune cells. Patients suffering from late-stage proliferative diabetic retinopathy (PDR) had elevated vitreous semaphorin 3A (SEMA3A). Using a murine model, we found that SEMA3A acts as a potent attractant for neuropilin-1-positive (NRP-1-positive) MPs. These proangiogenic MPs were selectively recruited to sites of pathological neovascularization in response to locally produced SEMA3A as well as VEGF. NRP-1-positive MPs were essential for disease progression, as NRP-1-deficient MPs failed to enter the retina in a murine model of oxygen-induced retinopathy (OIR), a proxy for PDR. OIR mice with NRP-1-deficient MPs exhibited decreased vascular degeneration and diminished pathological preretinal neovascularization. Intravitreal administration of a NRP-1-derived trap effectively mimicked the therapeutic benefits observed in mice lacking NRP-1-expressing MPs. Our findings indicate that NRP-1 is an obligate receptor for MP chemotaxis, bridging neural ischemia to an innate immune response in neovascular retinal disease.


Assuntos
Quimiotaxia , Células Mieloides/fisiologia , Neuropilina-1/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Proliferação de Células , Células Cultivadas , Corioide/imunologia , Retinopatia Diabética/imunologia , Retinopatia Diabética/metabolismo , Humanos , Imunidade Inata , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Sistema Fagocitário Mononuclear/imunologia , Neovascularização Fisiológica , Neuroimunomodulação , Semaforina-3A/metabolismo , Técnicas de Cultura de Tecidos
19.
J Vis Exp ; (88): e51351, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24998265

RESUMO

The rodent retina is perhaps the most accessible mammalian system in which to investigate neurovascular interplay within the central nervous system (CNS). It is increasingly being recognized that several neurodegenerative diseases such as Alzheimer's, multiple sclerosis, and amyotrophic lateral sclerosis present elements of vascular compromise. In addition, the most prominent causes of blindness in pediatric and working age populations (retinopathy of prematurity and diabetic retinopathy, respectively) are characterized by vascular degeneration and failure of physiological vascular regrowth. The aim of this technical paper is to provide a detailed protocol to study CNS vascular regeneration in the retina. The method can be employed to elucidate molecular mechanisms that lead to failure of vascular growth after ischemic injury. In addition, potential therapeutic modalities to accelerate and restore healthy vascular plexuses can be explored. Findings obtained using the described approach may provide therapeutic avenues for ischemic retinopathies such as that of diabetes or prematurity and possibly benefit other vascular disorders of the CNS.


Assuntos
Regeneração Nervosa/fisiologia , Retina/fisiopatologia , Doenças Retinianas/fisiopatologia , Animais , Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Camundongos , Neovascularização Patológica/fisiopatologia , Oxigênio , Retina/efeitos dos fármacos , Retina/patologia , Vasos Retinianos/patologia
20.
Cell Metab ; 18(4): 505-18, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24093675

RESUMO

The deterioration of the inner blood-retinal barrier and consequent macular edema is a cardinal manifestation of diabetic retinopathy (DR) and the clinical feature most closely associated with loss of sight. We provide evidence from both human and animal studies for the critical role of the classical neuronal guidance cue, semaphorin 3A, in instigating pathological vascular permeability in diabetic retinas via its cognate receptor neuropilin-1. We reveal that semaphorin 3A is induced in early hyperglycemic phases of diabetes within the neuronal retina and precipitates initial breakdown of endothelial barrier function. We demonstrate, by a series of orthogonal approaches, that neutralization of semaphorin 3A efficiently prevents diabetes-induced retinal vascular leakage in a stage of the disease when vascular endothelial growth factor neutralization is inefficient. These observations were corroborated in Tg(Cre-Esr1)/Nrp1(flox/flox) conditional knockout mice. Our findings identify a therapeutic target for macular edema and provide further evidence for neurovascular crosstalk in the pathogenesis of DR.


Assuntos
Retinopatia Diabética/metabolismo , Neurônios/metabolismo , Semaforina-3A/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/patologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Pessoa de Meia-Idade , Neuropilina-1/deficiência , Neuropilina-1/genética , Neuropilina-1/metabolismo , Permeabilidade/efeitos dos fármacos , RNA Mensageiro/metabolismo , Retina/metabolismo , Retina/fisiopatologia , Semaforina-3A/genética , Semaforina-3A/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...