Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 80(16): 3265-3278, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32540961

RESUMO

Activation of oncogenic KRAS is the most common driving event in lung adenocarcinoma development. Despite the existing rationale for targeting activated KRAS and its downstream effectors, the failure of clinical trials to date indicates that the mechanism of KRAS-driven malignancy remains poorly understood. Here we report that histone deacetylase 10 (HDAC10) might function as a putative tumor suppressor in mice carrying a spontaneously activated oncogenic Kras allele. Hdac10 deletion accelerated KRAS-driven early-onset lung adenocarcinomas, increased macrophage infiltration in the tumor microenvironment, and shortened survival time in mice. Highly tumorigenic and stem-like lung adenocarcinoma cells were increased in Hdac10-deleted tumors compared with Hdac10 wild-type tumors. HDAC10 regulated the stem-like properties of KRAS-expressing tumor cells by targeting SOX9. Expression of SOX9 was significantly increased in Hdac10-deleted tumor cells and depletion of SOX9 in Hdac10 knockout (KO) lung adenocarcinoma cells inhibited growth of tumorspheres. The genes associated with TGFß pathway were enriched in Hdac10 KO tumor cells, and activation of TGFß signaling contributed to SOX9 induction in Hdac10 KO lung adenocarcinoma cells. Overall, our study evaluates the functions and mechanisms of action of HDAC10 in lung carcinogenesis that will inform the rationale for targeting its related regulatory signaling as an anticancer strategy. SIGNIFICANCE: These findings linking HDAC10 and lung tumorigenesis identify potential novel strategies for targeting HDAC10 as a treatment for lung cancer.


Assuntos
Adenocarcinoma de Pulmão/genética , Genes ras , Histona Desacetilases/genética , Neoplasias Pulmonares/genética , Ativação Transcricional , Proteínas Supressoras de Tumor/genética , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Deleção de Genes , Mutação em Linhagem Germinativa , Histona Desacetilases/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Macrófagos , Camundongos , Células-Tronco Neoplásicas , Fatores de Transcrição SOX9/metabolismo , Análise de Sequência de RNA , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , Proteínas Supressoras de Tumor/metabolismo
2.
J Biol Chem ; 295(30): 10255-10270, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32457045

RESUMO

Poly(A)-specific ribonuclease (PARN) is a 3'-exoribonuclease that plays an important role in regulating the stability and maturation of RNAs. Recently, PARN has been found to regulate the maturation of the human telomerase RNA component (hTR), a noncoding RNA required for telomere elongation. Specifically, PARN cleaves the 3'-end of immature, polyadenylated hTR to form the mature, nonpolyadenylated template. Despite PARN's critical role in mediating telomere maintenance, little is known about how PARN's function is regulated by post-translational modifications. In this study, using shRNA- and CRISPR/Cas9-mediated gene silencing and knockout approaches, along with 3'-exoribonuclease activity assays and additional biochemical methods, we examined whether PARN is post-translationally modified by acetylation and what effect acetylation has on PARN's activity. We found PARN is primarily acetylated by the acetyltransferase p300 at Lys-566 and deacetylated by sirtuin1 (SIRT1). We also revealed how acetylation of PARN can decrease its enzymatic activity both in vitro, using a synthetic RNA probe, and in vivo, by quantifying endogenous levels of adenylated hTR. Furthermore, we also found that SIRT1 can regulate levels of adenylated hTR through PARN. The findings of our study uncover a mechanism by which PARN acetylation and deacetylation regulate its enzymatic activity as well as levels of mature hTR. Thus, PARN's acetylation status may play a role in regulating telomere length.


Assuntos
Exorribonucleases/metabolismo , Sirtuína 1/metabolismo , Telomerase/metabolismo , Homeostase do Telômero , Telômero/metabolismo , Acetilação , Exorribonucleases/genética , Técnicas de Inativação de Genes , Células HCT116 , Células HeLa , Humanos , Lisina/genética , Lisina/metabolismo , Sirtuína 1/genética , Telomerase/genética , Telômero/genética
3.
Nucl Med Commun ; 37(12): 1306-1317, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27623511

RESUMO

OBJECTIVES: The aim of the study is to evaluate the pharmacokinetics and microbiodistribution of Cu-labeled collagen-binding peptides. METHODS: The affinity constant (KD), association (ka), and dissociation rate constant (kd) for the peptide collagelin or its analog (named CRPA) binding to collagen were measured by biolayer interferometric analysis. Rats (n=4-5) with myocardial infarction or normal were injected intravenously with the Cu-labeled peptides or Cu-DOTA as a control. Dynamic PET imaging was performed for 60 min at 7-8 weeks after infarct. Fluorine-18 fluorodeoxyglucose PET imaging was performed to identify the viable myocardium. To validate the PET images, slices of heart samples from the base to the apex were analyzed using autoradiography and histology. RESULT: The peptides bound to collagen with a KD of ∼0.9 µmol/l. The Cu-peptides and Cu-DOTA accumulated in the infarct area (confirmed by autoradiography and histology images) within 1 min of injection and were excreted rapidly through the renal system. The blood clearance curves were biphasic with elimination half-lives of 21.9±2.4, 26.2±4.6, and 21.2±2.1 min for Cu-CRPA, Cu-collagelin, and the control Cu-DOTA, respectively. The clearance half-lives from the focal fibrotic tissue (24.1±1.5, 25.6±8.0, and 21.4±1.3 min, respectively) and remote myocardium (20.8±0.7, 21.0±5.5, and 19.1±2.4 min, respectively) were not significantly different. The uptake ratios of infarct-to-remote myocardium (1.93±0.18, 2.15±0.38, and 1.88±0.08, respectively) for Cu-CRPA, Cu-collagelin, and Cu-DOTA remained stable for the time period between 10 and 60 min. CONCLUSION: The distribution of the Cu-collagelin probes corresponds to the heterogeneous distribution of expanded extracellular space in the setting of myocardial infarction. The overall washout rate from the fibrous tissue was determined by the slow washout rate (t1/2≥20 min) of the peptides from the extracellular space to the vasculature, not by the dissociation rate (t1/2<2 min) of the Cu-peptides from collagen.


Assuntos
Colágeno/metabolismo , Radioisótopos de Cobre/farmacocinética , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/metabolismo , Peptídeos/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Animais , Autorradiografia , Doença Crônica , Modelos Animais de Doenças , Coração/diagnóstico por imagem , Miocárdio/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Ratos , Distribuição Tecidual
4.
Endocrinology ; 156(9): 3147-56, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26018251

RESUMO

Genome-wide association studies in human type 2 diabetes (T2D) have renewed interest in the pancreatic islet as a contributor to T2D risk. Chronic low-grade inflammation resulting from obesity is a risk factor for T2D and a possible trigger of ß-cell failure. In this study, microarray data were collected from mouse islets after overnight treatment with cytokines at concentrations consistent with the chronic low-grade inflammation in T2D. Genes with a cytokine-induced change of >2-fold were then examined for associations between single nucleotide polymorphisms and the acute insulin response to glucose (AIRg) using data from the Genetics Underlying Diabetes in Hispanics (GUARDIAN) Consortium. Significant evidence of association was found between AIRg and single nucleotide polymorphisms in Arap3 (5q31.3), F13a1 (6p25.3), Klhl6 (3q27.1), Nid1 (1q42.3), Pamr1 (11p13), Ripk2 (8q21.3), and Steap4 (7q21.12). To assess the potential relevance to islet function, mouse islets were exposed to conditions modeling low-grade inflammation, mitochondrial stress, endoplasmic reticulum (ER) stress, glucotoxicity, and lipotoxicity. RT-PCR revealed that one or more forms of stress significantly altered expression levels of all genes except Arap3. Thapsigargin-induced ER stress up-regulated both Pamr1 and Klhl6. Three genes confirmed microarray predictions of significant cytokine sensitivity: F13a1 was down-regulated 3.3-fold by cytokines, Ripk2 was up-regulated 1.5- to 3-fold by all stressors, and Steap4 was profoundly cytokine sensitive (167-fold up-regulation). Three genes were thus closely associated with low-grade inflammation in murine islets and also with a marker for islet function (AIRg) in a diabetes-prone human population. This islet-targeted genome-wide association scan identified several previously unrecognized candidate genes related to islet dysfunction during the development of T2D.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Inflamação/metabolismo , Ilhotas Pancreáticas/metabolismo , Estresse Fisiológico , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diabetes Mellitus Experimental/metabolismo , Fator XIII/genética , Fator XIII/metabolismo , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Interleucina-1beta , Interleucina-6 , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Serina Proteases
5.
Cell Calcium ; 57(5-6): 366-375, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25861744

RESUMO

In healthy pancreatic islets, glucose-stimulated changes in intracellular calcium ([Ca(2+)]i) provide a reasonable reflection of the patterns and relative amounts of insulin secretion. We report that [Ca(2+)]i in islets under stress, however, dissociates with insulin release in different ways for different stressors. Islets were exposed for 48h to a variety of stressors: cytokines (low-grade inflammation), 28mM glucose (28G, glucotoxicity), free fatty acids (FFAs, lipotoxicity), thapsigargin (ER stress), or rotenone (mitochondrial stress). We then measured [Ca(2+)]i and insulin release in parallel studies. Islets exposed to all stressors except rotenone displayed significantly elevated [Ca(2+)]i in low glucose, however, increased insulin secretion was only observed for 28G due to increased nifedipine-sensitive calcium-channel flux. Following 3-11mM glucose stimulation, all stressors substantially reduced the peak glucose-stimulated [Ca(2+)]i response (first phase). Thapsigargin and cytokines also substantially impacted aspects of calcium influx and ER calcium handling. Stressors did not significantly impact insulin secretion in 11mM glucose for any stressor, although FFAs showed a borderline reduction, which contributed to a significant decrease in the stimulation index (11:3mM glucose) observed for FFAs and also for 28G. We also clamped [Ca(2+)]i using 30mM KCl+250µM diazoxide to test the amplifying pathway. Only rotenone-treated islets showed a robust increase in 3-11mM glucose-stimulated insulin secretion under clamped conditions, suggesting that low-level mitochondrial stress might activate the metabolic amplifying pathway. We conclude that different stressors dissociate [Ca(2+)]i from insulin secretion differently: ER stressors (thapsigargin, cytokines) primarily affect [Ca(2+)]i but not conventional insulin secretion and 'metabolic' stressors (FFAs, 28G, rotenone) impacted insulin secretion.


Assuntos
Sinalização do Cálcio/fisiologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Estresse Fisiológico/fisiologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Citocinas/farmacologia , Retículo Endoplasmático/metabolismo , Ácidos Graxos não Esterificados/farmacologia , Glucose/farmacologia , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Camundongos , Modelos Animais , Estresse Fisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...