Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38337225

RESUMO

Polymer materials are increasingly widely used in high-fire-risk applications, such as aviation interior components. This study aimed to compare the tensile, thermal, and flame-retardant properties of test samples made from ultra-performance materials, polyetherimide (PEI) and polyetherketoneketone (PEKK), using the fused filament fabrication process (FFF). The tensile tests were performed for these materials at different raster angles (0, 45, and 90°). The thermomechanical tests were done in the axial, perpendicular, and through-thickness directions to the extruded filaments. The impact of printing parameters on the flame retardancy of 3D-printed samples was investigated in vertical burn tests with varying specimen thicknesses and printing directions. Experimentally, it was testified that PEKK had better isotropic behaviour than PEI for mechanical performance, thermal expansion, and fire-resistant properties, which are essential in fabricating intricately shaped products.

2.
Polymers (Basel) ; 15(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36679206

RESUMO

This paper aimed to estimate the effect of post-printing cooling conditions on the tensile and thermophysical properties of ULTEM® 9085 printed parts processed by fused deposition modeling (FDM). Three different cooling conditions were applied after printing Ultem samples: from 180 °C to room temperature (RT) for 4 h in the printer (P), rapid removal from the printer and cooling from 200 °C to RT for 4 h in the oven (O), and cooling at RT (R). Tensile tests and dynamic mechanical thermal analysis (DMTA) were carried out on samples printed in three orthogonal planes to investigate the effect of the post-printing cooling conditions on their mechanical and thermophysical properties. Optical microscopy was employed to relate the corresponding macrostructure to the mechanical performance of the material. The results obtained showed almost no difference between samples cooled either in the printer or oven and a notable difference for samples cooled at room temperature. Moreover, the lowest mechanical performance and sensitivity to the thermal cooling conditions were defined for the Z printing direction due to anisotropic nature of FDM and debonding among layers.

3.
Polymers (Basel) ; 14(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458288

RESUMO

In this paper, the results obtained for the structural integrity of two real-life aircraft interior parts produced by using Ultem 9085 and the fused deposition modeling (FDM) are presented. Numerical simulation was used to perform static mechanical analysis of the class divider subjected to the case of the most critical load. By using a simple beam model, it was identified that the most efficient way of increasing the bending stiffness (required to pass the most crucial load case test) would be to increase the part's width of the class divider. Mechanical testing of the parts was performed in vertical and horizontal load directions to supplement the numerical results. For the class divider, it was testified that the 3D-printed part would not fail under the most critical load case. For the folding table printed as a honeycomb structure, when loaded at the tip, the critical load of 900 N was acceptable, and as it was shown, there was significant potential for further optimization of the structure to either increase the maximum load or reduce the weight for any given load.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...