Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38314803

RESUMO

Background: Fetal growth restriction (FGR) is a pregnancy complication in which a newborn fails to achieve its growth potential, increasing the risk of perinatal morbidity and mortality. Chronic maternal gestational hypoxia, as well as placental insufficiency are associated with increased FGR incidence; however, the molecular mechanisms underlying FGR remain unknown. Methods: Pregnant mice were subjected to acute or chronic hypoxia (12.5% O2) resulting in reduced fetal weight. Placenta oxygen transport was assessed by blood oxygenation level dependent (BOLD) contrast magnetic resonance imaging (MRI). The placentae were analyzed via immunohistochemistry and in situ hybridization. Human placentae were selected from FGR and matched controls and analyzed by immunohistochemistry (IHC). Maternal and cord sera were analyzed by mass spectrometry. Results: We show that murine acute and chronic gestational hypoxia recapitulates FGR phenotype and affects placental structure and morphology. Gestational hypoxia decreased labyrinth area, increased the incidence of red blood cells (RBCs) in the labyrinth while expanding the placental spiral arteries (SpA) diameter. Hypoxic placentae exhibited higher hemoglobin-oxygen affinity compared to the control. Placental abundance of Bisphosphoglycerate mutase (BPGM) was upregulated in the syncytiotrophoblast and spiral artery trophoblast cells (SpA TGCs) in the murine gestational hypoxia groups compared to the control. Hif1α levels were higher in the acute hypoxia group compared to the control. In contrast, human FGR placentae exhibited reduced BPGM levels in the syncytiotrophoblast layer compared to placentae from healthy uncomplicated pregnancies. Levels of 2,3 BPG, the product of BPGM, were lower in cord serum of human FGR placentae compared to control. Polar expression of BPGM was found in both human and mouse placentae syncytiotrophoblast, with higher expression facing the maternal circulation. Moreover, in the murine SpA TGCs expression of BPGM was concentrated exclusively in the apical cell side, in direct proximity to the maternal circulation. Conclusions: This study suggests a possible involvement of placental BPGM in maternal-fetal oxygen transfer, and in the pathophysiology of FGR. Funding: This work was supported by the Weizmann Krenter Foundation and the Weizmann - Ichilov (Tel Aviv Sourasky Medical Center) Collaborative Grant in Biomedical Research, by the Minerva Foundation, by the ISF KillCorona grant 3777/19.


Assuntos
Retardo do Crescimento Fetal , Placenta , Humanos , Gravidez , Feminino , Camundongos , Animais , Placenta/metabolismo , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Bisfosfoglicerato Mutase/genética , Bisfosfoglicerato Mutase/metabolismo , Trofoblastos/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo
2.
JBRA Assist Reprod ; 28(1): 2-8, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-37850846

RESUMO

OBJECTIVE: Pre-treatment (PT) therapies in IVF are known to be used as pre-stimulation modality to improve cycle outcomes. This study aims to assess whether PT in GnRH antagonist cycles triggered with GnRH-agonist impact oocyte maturation response. METHODS: Data were retrospectively collected for patients who underwent GnRH antagonist cycle with agonist triggering with and without PT. The patients were allocated to groups according to their PT status. The primary outcome evaluated was suboptimal maturation response. Suboptimal maturation to trigger was defined as no oocyte upon retrieval when adequate response was expected. RESULTS: The study population included 196 patients who underwent GnRH antagonist cycle with agonist triggering. The study group included 69 patients who received PT. The control group included 127 patients with no PT. In univariate analysis, the PT group significantly displayed suboptimal response compared to the controls (p = 0.008). All the patients in the study group with suboptimal response (with or without hCG re-triggering) were treated with GnRH-agonist as PT. Basal and pre-trigger LH values were significantly lower in the study group compared to controls (p < 0.001). Multivariate regression analysis revealed that PT with GnRH agonist was a significant predictor for suboptimal response. CONCLUSIONS: Pre-treatment, and particularly the use of GnRH-agonist as PT in antagonist cycles triggered with agonist, increases the risk of suboptimal response to GnRH-agonist trigger. This might be explained by prolonged pituitary suppression, which lasts beyond the PT cessation.


Assuntos
Fertilização in vitro , Hormônio Liberador de Gonadotropina , Humanos , Estudos Retrospectivos , Indução da Ovulação , Oogênese , Oócitos , Gonadotropina Coriônica
3.
Biomedicines ; 11(10)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37892988

RESUMO

This multi-center study evaluated a novel microscope system capable of quantitative phase microscopy (QPM) for label-free sperm-cell selection for intracytoplasmic sperm injection (ICSI). Seventy-three patients were enrolled in four in vitro fertilization (IVF) units, where senior embryologists were asked to select 11 apparently normal and 11 overtly abnormal sperm cells, in accordance with current clinical practice, using a micromanipulator and 60× bright field microscopy. Following sperm selection and imaging via QPM, the individual sperm cell was chemically stained per World Health Organization (WHO) 2021 protocols and imaged via bright field microscopy for subsequent manual measurements by embryologists who were blinded to the QPM measurements. A comparison of the two modalities resulted in mean differences of 0.18 µm (CI -0.442-0.808 µm, 95%, STD-0.32 µm) for head length, -0.26 µm (CI -0.86-0.33 µm, 95%, STD-0.29 µm) for head width, 0.17 (CI -0.12-0.478, 95%, STD-0.15) for length-width ratio and 5.7 for acrosome-head area ratio (CI -12.81-24.33, 95%, STD-9.6). The repeatability of the measurements was significantly higher in the QPM modality. Surprisingly, only 19% of the subjectively pre-selected normal cells were found to be normal according to the WHO2021 criteria. The measurements of cells imaged stain-free through QPM were found to be in good agreement with the measurements performed on the reference method of stained cells imaged through bright field microscopy. QPM is non-toxic and non-invasive and can improve the clinical effectiveness of ICSI by choosing sperm cells that meet the strict criteria of the WHO2021.

4.
J Assist Reprod Genet ; 39(11): 2625-2633, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36264444

RESUMO

PURPOSE: To report outcome of planned oocyte cryopreservation (POC) in the first 8 years of this treatment in our center. METHODS: A retrospective study in a university-affiliated medical center. RESULTS: A total of 446 women underwent POC during 2011-2018. Fifty-seven (13%) women presented to use these oocytes during the study period (until June 2021). POC was performed at a mean age of 37.9 ± 2.0 (range 33-41). Age at thawing was 43.3 ± 2.1 (range 38-49). A total of 34 (60%) women transferred their oocytes for thawing at other units. Oocyte survival after thawing was significantly higher at our center than following shipping to ancillary sites (78 vs. 63%, p = 0.047). Forty-nine women completed their treatment, either depleting their cryopreserved oocytes without conceiving (36) or attaining a live birth (13)-27% live birth rate per woman. Only one of eleven women who cryopreserved oocytes aged 40 and older had a live birth using thawed oocytes. CONCLUSION: Women should be advised to complete planned oocyte cryopreservation before age 40, given low success rates in women who underwent cryopreservation at advanced reproductive age. In this study, oocyte shipping was associated with lower survival rate. These findings may be relevant for women considering POC and utilization of cryopreserved oocytes.


Assuntos
Criopreservação , Transferência Embrionária , Gravidez , Feminino , Humanos , Masculino , Taxa de Gravidez , Estudos Retrospectivos , Oócitos
5.
Cell Cycle ; 21(8): 792-804, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35104175

RESUMO

Fertilization triggers physiological degradation of maternal-mRNAs, which are then replaced by embryonic transcripts. Ample evidence suggests that Argonaut 2 (AGO2) is a possible post-fertilization regulator of maternal-mRNAs degradation; but its role in degradation of maternal-mRNAs during oocyte maturation remains obscure. Fyn, a member of the Src family kinases (SFKs), and an essential factor in oocyte maturation, was reported to inhibit AGO2 activity in oligodendrocytes. Our aim was to examine the role of Fyn and AGO2 in degradation of maternal-mRNAs during oocyte maturation by either suppressing their activity with SU6656 - an SFKs inhibitor; or by microinjecting DN-Fyn RNA for suppression of Fyn and BCl-137 for suppression of AGO2. Batches of fifteen mouse oocytes or embryos were analyzed by qPCR to measure the expression level of nine maternal-mRNAs that were selected for their known role in oocyte growth, maturation and early embryogenesis. We found that Fyn/SFKs are involved in maintaining the stability of at least four pre-transcribed mRNAs in oocytes at the germinal vesicle (GV) stage, whereas AGO2 had no role at this stage. During in-vivo oocyte maturation, eight maternal-mRNAs were significantly degraded. Inhibition of AGO2 prevented the degreadation of at least five maternal-mRNAs, whereas inhibition of Fyn/SFK prevented degradation of at least five Fyn maternal-mRNAs and two SFKs maternal-mRNAs; pointing at their role in promoting the physiological degradation which occurs during in-vivo oocyte maturation. Our findings imply the involvement of Fyn/SFKs in stabilization of maternal-mRNA at the GV stage and the involvement of Fyn, SFKs and AGO2 in degradation of maternal mRNAs during oocyte maturation.


Assuntos
Oogênese , RNA Mensageiro Estocado , Animais , Camundongos , Oócitos/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro Estocado/metabolismo , Quinases da Família src/metabolismo
6.
Front Immunol ; 12: 737401, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790194

RESUMO

Successful implantation requires the coordinated migration and invasion of trophoblast cells from out of the blastocyst and into the endometrium. This process relies on signals produced by cells in the maternal endometrium. However, the relative contribution of stroma cells remains unclear. The study of human implantation has major technical limitations, therefore the need of in vitro models to elucidate the molecular mechanisms. Using a recently described 3D in vitro models we evaluated the interaction between trophoblasts and human endometrial stroma cells (hESC), we assessed the process of trophoblast migration and invasion in the presence of stroma derived factors. We demonstrate that hESC promotes trophoblast invasion through the generation of an inflammatory environment modulated by TNF-α. We also show the role of stromal derived IL-17 as a promoter of trophoblast migration through the induction of essential genes that confer invasive capacity to cells of the trophectoderm. In conclusion, we describe the characterization of a cellular inflammatory network that may be important for blastocyst implantation. Our findings provide a new insight into the complexity of the implantation process and reveal the importance of inflammation for embryo implantation.


Assuntos
Movimento Celular , Implantação do Embrião , Endométrio/efeitos dos fármacos , Interleucina-17/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Trofoblastos/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Adesão Celular , Diferenciação Celular , Linhagem Celular , Endométrio/imunologia , Endométrio/metabolismo , Feminino , Humanos , Interleucina-17/genética , Receptores Tipo I de Fatores de Necrose Tumoral/agonistas , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Via Secretória , Transdução de Sinais , Células Estromais/imunologia , Células Estromais/metabolismo , Trofoblastos/imunologia
7.
Front Med (Lausanne) ; 8: 711810, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490300

RESUMO

In the mammalian female, only a small subset of ovarian follicles, known as the dominant follicles (DFs), are selected for ovulation in each reproductive cycle, while the majority of the follicles and their resident oocytes are destined for elimination. This study aimed at characterizing early changes in blood vessel properties upon the establishment of dominance in the mouse ovary and application of this vascular phenotype for prediction of the follicles destined to ovulate. Sexually immature mice, hormonally treated for induction of ovulation, were imaged at three different stages by dynamic contrast-enhanced (DCE) MRI: prior to hormonal administration, at the time of DF selection, and upon formation of the corpus luteum (CL). Macromolecular biotin-bovine serum albumin conjugated with gadolinium-diethylenetriaminepentaacetic acid (b-BSA-GdDTPA) was intravenously injected, and the dynamics of its extravasation from permeable vessels as well as its accumulation in the antral cavity of the ovarian follicles was followed by consecutive T1-weighted MRI. Permeability surface area product (permeability) and fractional blood volume (blood volume) were calculated from b-BSA-GdDTPA accumulation. We found that the neo-vasculature during the time of DF selection was characterized by low blood volume and low permeability values as compared to unstimulated animals. Interestingly, while the vasculature of the CL showed higher blood volume compared to the DF, it exhibited a similar permeability. Taking advantage of immobilized ovarian imaging, we combined DCE-MRI and intravital light microscopy, to reveal the vascular properties of follicles destined for dominance from the non-ovulating subordinate follicles (SFs). Immediately after their selection, permeability of the vasculature of DF was attenuated compared to SF while the blood volume remained similar. Furthermore, DFs were characterized by delayed contrast enhancement in the avascular follicular antrum, reflecting interstitial convection, whereas SFs were not. In this study, we showed that although DF selection is accompanied by blood vessel growth, the new vasculature remained relatively impermeable compared to the vasculature in control animal and compared to SF. Additionally, DFs show late signal enhancement in their antrum. These two properties may aid in clinical prediction of follicular dominance at an early stage of development and help in their diagnosis for possible treatment of infertility.

8.
JCI Insight ; 5(22)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33208556

RESUMO

Successful implantation is associated with a unique spatial pattern of vascular remodeling, characterized by profound peripheral neovascularization surrounding a periembryo avascular niche. We hypothesized that hyaluronan controls the formation of this distinctive vascular pattern encompassing the embryo. This hypothesis was evaluated by genetic modification of hyaluronan metabolism, specifically targeted to embryonic trophoblast cells. The outcome of altered hyaluronan deposition on uterine vascular remodeling and postimplantation development were analyzed by MRI, detailed histological examinations, and RNA sequencing of uterine NK cells. Our experiments revealed that disruption of hyaluronan synthesis, as well as its increased cleavage at the embryonic niche, impaired implantation by induction of decidual vascular permeability, defective vascular sinus folds formation, breach of the maternal-embryo barrier, elevated MMP-9 expression, and interrupted uterine NK cell recruitment and function. Conversely, enhanced deposition of hyaluronan resulted in the expansion of the maternal-embryo barrier and increased diffusion distance, leading to compromised implantation. The deposition of hyaluronan at the embryonic niche is regulated by progesterone-progesterone receptor signaling. These results demonstrate a pivotal role for hyaluronan in successful pregnancy by fine-tuning the periembryo avascular niche and maternal vascular morphogenesis.


Assuntos
Decídua/irrigação sanguínea , Implantação do Embrião , Embrião de Mamíferos/fisiologia , Ácido Hialurônico/farmacologia , Células Matadoras Naturais/fisiologia , Neovascularização Fisiológica/efeitos dos fármacos , Útero/fisiologia , Animais , Diferenciação Celular , Decídua/efeitos dos fármacos , Decídua/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Feminino , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Masculino , Troca Materno-Fetal , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Transdução de Sinais , Trofoblastos/citologia , Trofoblastos/efeitos dos fármacos , Trofoblastos/fisiologia , Útero/citologia , Útero/efeitos dos fármacos , Remodelação Vascular , Viscossuplementos/farmacologia
9.
Int J Mol Sci ; 21(12)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604954

RESUMO

Each follicle represents the basic functional unit of the ovary. From its very initial stage of development, the follicle consists of an oocyte surrounded by somatic cells. The oocyte grows and matures to become fertilizable and the somatic cells proliferate and differentiate into the major suppliers of steroid sex hormones as well as generators of other local regulators. The process by which a follicle forms, proceeds through several growing stages, develops to eventually release the mature oocyte, and turns into a corpus luteum (CL) is known as "folliculogenesis". The task of this review is to define the different stages of folliculogenesis culminating at ovulation and CL formation, and to summarize the most recent information regarding the newly identified factors that regulate the specific stages of this highly intricated process. This information comprises of either novel regulators involved in ovarian biology, such as Ube2i, Phoenixin/GPR73, C1QTNF, and α-SNAP, or recently identified members of signaling pathways previously reported in this context, namely PKB/Akt, HIPPO, and Notch.


Assuntos
Hormônios Esteroides Gonadais/metabolismo , Oogênese , Folículo Ovariano/citologia , Ovulação , Transdução de Sinais , Animais , Feminino , Humanos , Folículo Ovariano/metabolismo
10.
Cell Cycle ; 18(20): 2629-2640, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31401933

RESUMO

Resumption of meiosis in mammalian oocytes, defined as oocyte maturation, is stimulated by luteinizing hormone (LH). Fully grown oocytes can also mature spontaneously, upon their release from the ovarian follicle. However, growing oocytes fail to resume meiosis in vitro and the mechanism underlying their meiotic incompetence is unknown. It is commonly accepted that a drop in intraoocyte cyclic guanosine monophosphate (cGMP) resulting in the elevated activity of the oocyte-specific PDE3A leads to a decrease in cAMP content, essential for reinitiation of meiosis. We explored the regulation of these cyclic nucleotides and their degrading PDE3A in growing oocytes. Our research addressed the LH-induced rather than spontaneous oocyte maturation. We examined 16-21 as compared to 25-day-old, PMSG-primed rats, treated with the LH analog, hCG. The effect of LH was also examined ex vivo, in isolated ovarian follicles. We found that hCG failed to induce oocyte maturation and ovulation in the younger animals and that ovulation-associated genes were not upregulated in response to this gonadotropin. Furthemore, the drop of intraoocyte cGMP and cAMP observed in fully grown oocytes upon exposure of the ovary to LH, was not detected in growing oocytes. Interestingly, whereas the global expression of PDE3A in growing and fully grown oocytes is similar, a significantly lower activity of this enzyme was determined in growing oocytes. Our findings show that meiotic incompetence is associated with a relatively high oocyte cGMP concentration and a low activity of PDE3A, which in follicle-enclosed oocytes may represent the failure of the somatic follicle cells to respond to LH.


Assuntos
GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Meiose/efeitos dos fármacos , Oócitos/metabolismo , Animais , Gonadotropina Coriônica/farmacologia , AMP Cíclico/metabolismo , Feminino , Hormônio Foliculoestimulante/análogos & derivados , Gonadotropinas Equinas/farmacologia , Hormônio Luteinizante/análogos & derivados , Oogênese/efeitos dos fármacos , Folículo Ovariano/metabolismo , Ovulação/efeitos dos fármacos , Ratos , Ratos Wistar
11.
J Assist Reprod Genet ; 36(1): 159-164, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30402730

RESUMO

PURPOSE: To study the outcome of repeated biopsy for pre-implantation genetic testing in case of failed genetic diagnosis in the first biopsy. METHODS: The study group included 81 cycles where embryos underwent re-biopsy because there were no transferable embryos after the first biopsy: in 55 cycles, the first procedure was polar body biopsy (PBs) and the second cleavage-stage (BB); in 26 cycles, the first was BB and the second trophectoderm (BLAST) biopsy. The control group included 77 cycles where embryos underwent successful genetic diagnosis following the first biopsy, matched by maternal age, egg number, genetic inheritance type, and embryonic stage at the first biopsy. We measured genetic diagnosis rate, clinical pregnancy rates (PRs), live-birth rates (LBRs), gestational age, and birth weight. RESULTS: For repeated biopsy, genetic diagnosis was received in 67/81 cycles (82.7%); at a higher rate in PB + BB than in BB + BLAST (49/55, 89.1% and 18/26, 69.2% respectively, p = 0.055). Transferable embryos were found in 47 and 68 cycles in the study and the control groups. PRs/ET were 20/47 (42.6%) and 36/68 (52.9%) (p = 0.27), 16/36 (44.4%) following PB + BB, and 4/11 (36.4%) following BB + BLAST (p = 0.74). LBRs/ET were 13/47 (27.7%) in study group, and 28/68 (41.2%) in the controls (p = 0.14), 10/36 (27.8%) following PB + BB group, and 3/11 (27.3%) following BB + BLAST (p > 0.99). Gestational age and birth weight were similar in all groups. CONCLUSIONS: Re-biopsy of embryos when no genetic diagnosis could be reached following the first biopsy, achieved high rates of genetic diagnosis, pregnancies, and live births.


Assuntos
Aneuploidia , Coeficiente de Natalidade , Implantação do Embrião , Fertilização in vitro , Doenças Genéticas Inatas/diagnóstico , Testes Genéticos/métodos , Diagnóstico Pré-Implantação/métodos , Adulto , Biópsia , Transferência Embrionária , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/prevenção & controle , Humanos , Nascido Vivo , Gravidez , Taxa de Gravidez , Resultado do Tratamento
12.
BMC Genomics ; 19(1): 28, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29310578

RESUMO

BACKGROUND: Adenosine-to-inosine (A-to-I) RNA editing is an epigenetic modification catalyzed by adenosine deaminases acting on RNA (ADARs), and is especially prevalent in the brain. We used the highly accurate microfluidics-based multiplex PCR sequencing (mmPCR-seq) technique to assess the effects of development and environmental stress on A-to-I editing at 146 pre-selected, conserved sites in the rat prefrontal cortex and amygdala. Furthermore, we asked whether changes in editing can be observed in offspring of stress-exposed rats. In parallel, we assessed changes in ADARs expression levels. RESULTS: In agreement with previous studies, we found editing to be generally higher in adult compared to neonatal rat brain. At birth, editing was generally lower in prefrontal cortex than in amygdala. Stress affected editing at the serotonin receptor 2c (Htr2c), and editing at this site was significantly altered in offspring of rats exposed to prereproductive stress across two generations. Stress-induced changes in Htr2c editing measured with mmPCR-seq were comparable to changes measured with Sanger and Illumina sequencing. Developmental and stress-induced changes in Adar and Adarb1 mRNA expression were observed but did not correlate with editing changes. CONCLUSIONS: Our findings indicate that mmPCR-seq can accurately detect A-to-I RNA editing in rat brain samples, and confirm previous accounts of a developmental increase in RNA editing rates. Our findings also point to stress in adolescence as an environmental factor that alters RNA editing patterns several generations forward, joining a growing body of literature describing the transgenerational effects of stress.


Assuntos
Adenosina/metabolismo , Encéfalo/metabolismo , Meio Ambiente , Interação Gene-Ambiente , Inosina/metabolismo , Edição de RNA , RNA/genética , RNA/metabolismo , Estresse Fisiológico/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Fatores Etários , Animais , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Especificidade de Órgãos/genética , Ratos , Receptor 5-HT2C de Serotonina/genética , Receptor 5-HT2C de Serotonina/metabolismo
13.
Sci Rep ; 8(1): 1412, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362484

RESUMO

Thin section histology is limited in providing 3D structural information, particularly of the intricate morphology of the vasculature. Availability of high spatial resolution imaging for thick samples, would overcome the restriction dictated by low light penetration. Our study aimed at optimizing the procedure for efficient and affordable tissue clearing, along with an appropriate immunofluorescence labeling that will be applicable for high resolution imaging of blood and lymphatic vessels. The new procedure, termed whole organ blood and lymphatic vessels imaging (WOBLI), is based on two previously reported methods, CLARITY and ScaleA2. We used this procedure for the analysis of isolated whole ovary, uterus, lung and liver. These organs were subjected to passive clearing, following fixation, immunolabeling and embedding in hydrogel. Cleared specimens were immersed in ScaleA2 solution until transparency was achieved and imaged using light sheet microscopy. We demonstrate that WOBLI allows detailed analysis and generation of structural information of the lymphatic and blood vasculature from thick slices and more importantly, from whole organs. We conclude that WOBLI offers the advantages of morphology and fluorescence preservation with efficient clearing. Furthermore, WOBLI provides a robust, cost-effective method for generation of transparent specimens, allowing high resolution, 3D-imaging of blood and lymphatic vessels networks.


Assuntos
Vasos Sanguíneos/citologia , Vasos Linfáticos/diagnóstico por imagem , Animais , Feminino , Imunofluorescência , Imageamento Tridimensional , Fígado/irrigação sanguínea , Fígado/diagnóstico por imagem , Pulmão/irrigação sanguínea , Pulmão/diagnóstico por imagem , Camundongos , Microscopia de Fluorescência , Ovário/irrigação sanguínea , Ovário/diagnóstico por imagem , Útero/irrigação sanguínea , Útero/diagnóstico por imagem
14.
FASEB J ; 32(4): 2124-2136, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29259033

RESUMO

Members of the TGF-ß superfamily take part in the control of folliculogenesis. Vasorin (Vasn) is a newly identified negative regulator of TGF-ß signaling whose possible involvement in ovarian physiology has never been studied. Here, we demonstrate that Vasn is expressed in the ovary by somatic cells of follicles, and that its expression is up-regulated by LH. We established a conditional knockout (cKO) mouse model in which Vasn is deleted specifically in granulosa cells of growing follicles from the secondary stage onwards. Using this model, we show that, upon hormonal stimulation, follicle ovulation size is almost 2-fold higher. This enhanced ovulatory response is associated with overactivation of the TGF-ß signaling pathway and a lower number of atretic antral follicles. Of importance, we demonstrate that the number of primordial follicles is reduced in prepubertal cKO mouse ovaries, which suggests that the production of VASN by growing follicles protects the ovarian reserve. Finally, analysis of systemic KO mice revealed that the ovarian reserve is almost 2.5-fold higher, which implies that Vasn may also play a role in primordial follicle formation. Overall, our findings reveal that Vasn is a new regulator that exerts an effect on several key ovarian functions, including folliculogenesis, maintenance of the ovarian reserve, and ovulation.-Rimon-Dahari, N., Heinemann-Yerushalmi, L., Hadas, R., Kalich-Philosoph, L., Ketter, D., Nevo, N., Galiani, D., Dekel, N. Vasorin: a newly identified regulator of ovarian folliculogenesis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Membrana/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , Animais , Proteínas Reguladoras de Apoptose/genética , Células Cultivadas , Feminino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Folículo Ovariano/metabolismo , Reserva Ovariana , Ovulação
15.
Sci Rep ; 7(1): 2238, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28533542

RESUMO

Meiotically arrested oocytes are characterized by the presence of the nuclear structure known as germinal-vesicle (GV), the breakdown of which (GVBD) is associated with resumption of meiosis. Fyn is a pivotal factor in resumption of the first meiotic division; its inhibition markedly decreases the fraction of oocytes undergoing GVBD. Here, we reveal that in mouse oocytes Fyn is post-transcriptionally regulated by miR-125a-3p. We demonstrate that in oocytes resuming meiosis miR-125a-3p and Fyn exhibit a reciprocal expression pattern; miR-125a-3p decreases alongside with an increase in Fyn expression. Microinjection of miR-125a-3p inhibits GVBD, an effect that is markedly reduced by Fyn over-expression, and impairs the organization of the actin rim surrounding the nucleus. Lower rate of GVBD is also observed in oocytes exposed to cytochalasin-D or blebbistatin, which interfere with actin polymerization and contractility of actin bundles, respectively. By down-regulating Fyn in HEK-293T cells, miR-125a-3p reduces the interaction between actin and A-type lamins, which constitute the nuclear-lamina. Our findings suggest a mechanism, by which a decrease in miR-125a-3p during oocyte maturation facilitates GVBD by allowing Fyn up-regulation and the resulting stabilization of the interaction between actin and A-type lamins.


Assuntos
Actinas/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Meiose , MicroRNAs/genética , Oócitos/metabolismo , Proteínas Proto-Oncogênicas c-fyn/genética , Actinas/química , Actinas/metabolismo , Análise de Variância , Animais , Diferenciação Celular/genética , Feminino , Regulação da Expressão Gênica , Humanos , Camundongos , Oócitos/citologia , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Interferência de RNA
16.
Results Probl Cell Differ ; 58: 167-90, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27300179

RESUMO

The ovary, the female gonad, serves as the source for the germ cells as well as the major supplier of steroid sex hormones. During embryonic development, the primordial germ cells (PGCs) are specified, migrate to the site of the future gonad, and proliferate, forming structures of germ cells nests, which will eventually break down to generate the primordial follicles (PMFs). Each PMF contains an oocyte arrested at the first prophase of meiosis, surrounded by a flattened layer of somatic pre-granulosa cells. Most of the PMFs are kept dormant and only a selected population is activated to join the growing pool of follicles in a process regulated by both intra- and extra-oocyte factors. The PMFs will further develop into secondary pre-antral follicles, a stage which depends on bidirectional communication between the oocyte and the surrounding somatic cells. Many of the signaling molecules involved in this dialog belong to the transforming growth factor ß (TGF-ß) superfamily. As the follicle continues to develop, a cavity called antrum is formed. The resulting antral follicles relay on the pituitary gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) for their development. Most of the follicles undergo atretic degeneration and only a subset of the antral follicles, known as the dominant follicles, will reach the preovulatory stage at each reproductive cycle, respond to LH, and subsequently ovulate, releasing a fertilizable oocyte. The remaining somatic cells in the raptured follicle will undergo terminal differentiation and form the corpus luteum, which secretes progesterone necessary to maintain pregnancy.


Assuntos
Corpo Lúteo/citologia , Células da Granulosa/citologia , Oócitos/citologia , Folículo Ovariano/citologia , Animais , Corpo Lúteo/metabolismo , Feminino , Gonadotropinas Hipofisárias/metabolismo , Células da Granulosa/metabolismo , Humanos , Modelos Biológicos , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Ovulação
17.
FASEB J ; 29(11): 4670-81, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26207029

RESUMO

Timely degradation of protein regulators of the cell cycle is essential for the completion of cell division. This degradation is promoted by the E3 anaphase-promoting complex/cyclosome (APC/C) and mediated by the E2 ubiquitin-conjugating enzymes (Ube2s). Unlike the ample information gathered regarding the meiotic E3 APC/C, the E2s participating in this cell division have never been studied. We identified Ube2C, -S, and -D3 as the E2 enzymes that regulate APC/C activity during meiosis of mouse oocytes. Their depletion reduces the levels of the first meiotic cytokinesis by 50%, and their overexpression doubles and accelerates its completion (50% as compared with 4% at 11 h). We also demonstrated that these E2s take part in ensuring appropriate spindle formation. It is noteworthy that high levels of Ube2C bring about the resumption of the first meiotic division, regardless of the formation of the spindle, overriding the spindle assembly checkpoint. Thus, alongside their canonical function in protein degradation, Ube2C and -S also control the extrusion of the first polar body. Overall, our study characterizes new regulators and unveils the novel roles they play during the meiotic division. These findings shed light on faithful chromosome segregation in oocytes and may contribute to better understanding of aneuploidy and its consequent genetic malformations.


Assuntos
Segregação de Cromossomos/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Meiose/fisiologia , Corpos Polares/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Animais , Feminino , Camundongos , Corpos Polares/citologia , Proteólise , Enzimas de Conjugação de Ubiquitina/genética
18.
Proc Natl Acad Sci U S A ; 111(46): E4972-80, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25368174

RESUMO

The HDL receptor scavenger receptor, class B type I (SR-BI) controls the structure and fate of plasma HDL. Female SR-BI KO mice are infertile, apparently because of their abnormal cholesterol-enriched HDL particles. We examined the growth and meiotic progression of SR-BI KO oocytes and found that they underwent normal germinal vesicle breakdown; however, SR-BI KO eggs, which had accumulated excess cholesterol in vivo, spontaneously activated, and they escaped metaphase II (MII) arrest and progressed to pronuclear, MIII, and anaphase/telophase III stages. Eggs from fertile WT mice were activated when loaded in vitro with excess cholesterol by a cholesterol/methyl-ß-cyclodextrin complex, phenocopying SR-BI KO oocytes. In vitro cholesterol loading of eggs induced reduction in maturation promoting factor and MAPK activities, elevation of intracellular calcium, extrusion of a second polar body, and progression to meiotic stages beyond MII. These results suggest that the infertility of SR-BI KO females is caused, at least in part, by excess cholesterol in eggs inducing premature activation and that cholesterol can activate WT mouse eggs to escape from MII arrest. Analysis of SR-BI KO female infertility raises the possibility that abnormalities in cholesterol metabolism might underlie some cases of human female infertility of unknown etiology.


Assuntos
HDL-Colesterol/metabolismo , Colesterol/toxicidade , Infertilidade Feminina/etiologia , Meiose/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Receptores Depuradores Classe B/deficiência , Animais , Sobrevivência Celular , Ácido Egtázico/farmacologia , Feminino , Sistema de Sinalização das MAP Quinases , Meiose/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oócitos/citologia , Corpos Polares , Receptores Depuradores Classe B/fisiologia , Estrôncio/farmacologia , beta-Ciclodextrinas/farmacologia
19.
Reproduction ; 148(5): 507-17, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25118304

RESUMO

Similar expression to FGF (Sef or IL17-RD), is a tumor suppressor and an inhibitor of growth factors as well as of pro-inflammatory cytokine signaling. In this study, we examined the regulation of Sef expression by gonadotropins during ovarian folliculogenesis. In sexually immature mice, in situ hybridization (ISH) localized Sef gene expression to early developing oocytes and granulosa cells (GC) but not to theca cells. Sef was also expressed in mouse ovarian endothelial cells, in the fallopian tube epithelium as well as in adipose tissue venules. SEF protein expression, determined by immunohistochemistry (IHC), correlated well with Sef mRNA expression in GC, while differential expression was noticed in oocytes. High Sef mRNA but undetectable SEF protein levels were observed in the oocytes of primary/secondary follicles, while an inverse correlation was found in the oocytes of preantral and small antral follicles. Sef mRNA expression dropped after pregnant mare's serum gonadotropin (PMSG) administration, peaked at 6-8 h after human chorionic gonadotropin (hCG) treatment, and declined by 12 h after this treatment. ISH and IHC localized the changes to oocytes and mural GC following PMSG treatment, whereas Sef expression increased in mural GC and declined in granulosa-lutein cells upon hCG treatment. The ovarian expression of SEF was confirmed using human samples. ISH localized SEF transcripts to human GC of antral follicles but not to corpora lutea. Furthermore, SEF mRNA was detected in human GC recovered from preovulatory follicles. These results are the first to demonstrate SEF expression in a healthy ovary during folliculogenesis. Hormonal regulation of its expression suggests that SEF may be an important factor involved in intra-ovarian control mechanisms.


Assuntos
Células da Granulosa/metabolismo , Proteínas de Membrana/metabolismo , Oócitos/metabolismo , Receptores de Interleucina/metabolismo , Animais , Gonadotropina Coriônica/farmacologia , Feminino , Fármacos para a Fertilidade/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Gonadotropinas Equinas/farmacologia , Células da Granulosa/efeitos dos fármacos , Humanos , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Oócitos/efeitos dos fármacos , RNA Mensageiro/metabolismo , Receptores de Interleucina/genética
20.
Semin Reprod Med ; 32(5): 337-45, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24959815

RESUMO

Implantation is strictly dependent on the mutual interaction between a receptive endometrium and the blastocyst. Hence, synchronization between blastocyst development and the acquisition of endometrial receptivity is a prerequisite for the success of this process. This review depicts the cellular and molecular events that coordinate these complex activities. Specifically, the involvement of the sex steroid hormones, estrogen and progesterone, as well as components of the immune system, such as cytokines and specific blood cells, is elaborated.


Assuntos
Implantação do Embrião/fisiologia , Endométrio/fisiologia , Hormônios Esteroides Gonadais/fisiologia , Sistema Imunitário/fisiologia , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...