Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 9(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143380

RESUMO

Verticillium wilt is one of the most important diseases of cauliflower and can lead to serious economic losses. In this study, two complementary strategies were explored to employ the antagonistic capacity of Verticillium isaacii towards Verticillium wilt of cauliflower. The first strategy focused on introducing V. isaacii Vt305 by artificial inoculation of cauliflower plantlets at the nursery stage. Two inoculum types (spores and microsclerotia of V. isaacii Vt305) and different concentrations of microsclerotia were tested in greenhouse and field trials. Seed treatment with 500 microsclerotia seed-1 led to a satisfying biocontrol level of Verticillium wilt. In addition, the PHYTO-DRIP® system was successful in delivering the microsclerotia to cauliflower seeds. The second strategy relied on the stimulation of the natural V. isaacii populations by rotating cauliflower with green manures and potato. Four green manure crops and potato were tested during multiple field experiments. Although these crops seemed to stimulate the V. isaacii soil population, this increase did not result in a control effect on Verticillium wilt of cauliflower in the short term. Importantly, our results indicate that the use of green manures is compatible with the application of V. isaacii Vt305 as biocontrol agent of Verticillium wilt in cauliflower.

2.
Front Microbiol ; 8: 1186, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28729855

RESUMO

The soil-borne fungus Verticillium causes serious vascular disease in a wide variety of annual crops and woody perennials. Verticillium wilt is notoriously difficult to control by conventional methods, so there is great potential for biocontrol to manage this disease. In this study we aimed to review the research about Verticillium biocontrol to get a better understanding of characteristics that are desirable in a biocontrol agent (BCA) against Verticillium wilt. We only considered studies in which the BCAs were tested on plants. Most biocontrol studies were focused on plants of the Solanaceae, Malvaceae, and Brassicaceae and within these families eggplant, cotton, and oilseed rape were the most studied crops. The list of bacterial BCAs with potential against Verticillium was dominated by endophytic Bacillus and Pseudomonas isolates, while non-pathogenic xylem-colonizing Verticillium and Fusarium isolates topped the fungal list. Predominant modes of action involved in biocontrol were inhibition of primary inoculum germination, plant growth promotion, competition and induced resistance. Many BCAs showed in vitro antibiosis and mycoparasitism but these traits were not correlated with activity in vivo and there is no evidence that they play a role in planta. Good BCAs were obtained from soils suppressive to Verticillium wilt, disease suppressive composts, and healthy plants in infested fields. Desirable characteristics in a BCA against Verticillium are the ability to (1) affect the survival or germination of microsclerotia, (2) colonize the xylem and/or cortex and compete with the pathogen for nutrients and/or space, (3) induce resistance responses in the plant and/or (4) promote plant growth. Potential BCAs should be screened in conditions that resemble the field situation to increase the chance of successful use in practice. Furthermore, issues such as large scale production, formulation, preservation conditions, shelf life, and application methods should be considered early in the process of selecting BCAs against Verticillium.

3.
Mol Plant Pathol ; 17(7): 1004-16, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26663851

RESUMO

INTRODUCTION: The causal agents of Verticillium wilts are globally distributed pathogens that cause significant crop losses every year. Most Verticillium wilts are caused by V. dahliae, which is pathogenic on a broad range of plant hosts, whereas other pathogenic Verticillium species have more restricted host ranges. In contrast, V. longisporum appears to prefer brassicaceous plants and poses an increasing problem to oilseed rape production. TAXONOMY: Kingdom Fungi; Phylum Ascomycota; Class Sordariomycetes; Subclass Hypocreomycetida; Family Plectosphaerellaceae; genus Verticillium. DISEASE SYMPTOMS: Dark unilateral stripes appear on the stems of apparently healthy looking oilseed rape plants at the end of the growing season. Microsclerotia are subsequently formed in the stem cortex beneath the epidermis. GENOME: Verticillium longisporum is the only non-haploid species in the Verticillium genus, as it is an amphidiploid hybrid that carries almost twice as much genetic material as the other Verticillium species as a result of interspecific hybridization. DISEASE MANAGEMENT: There is no effective fungicide treatment to control Verticillium diseases, and resistance breeding is the preferred strategy for disease management. However, only a few Verticillium wilt resistance genes have been identified, and monogenic resistance against V. longisporum has not yet been found. Quantitative resistance exists mainly in the Brassica C-genome of parental cabbage lines and may be introgressed in oilseed rape breeding lines. COMMON NAME: Oilseed rape colonized by V. longisporum does not develop wilting symptoms, and therefore the common name of Verticillium wilt is unsuitable for this crop. Therefore, we propose 'Verticillium stem striping' as the common name for Verticillium infections of oilseed rape.


Assuntos
Brassica napus/microbiologia , Interações Hospedeiro-Patógeno , Verticillium/fisiologia , Evolução Biológica , Produtos Agrícolas/microbiologia , Doenças das Plantas/microbiologia , Verticillium/classificação , Verticillium/genética , Verticillium/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA