Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7569, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555284

RESUMO

Proteins and peptides found in human milk have bioactive potential to benefit the newborn and support healthy development. Research has been carried out on the health benefits of proteins and peptides, but many questions still need to be answered about the nature of these components, how they are formed, and how they end up in the milk. This study explored and elucidated the complexity of the human milk proteome and peptidome. Proteins and peptides were analyzed with non-targeted nanoLC-Orbitrap-MS/MS in a selection of 297 milk samples from the CHILD Cohort Study. Protein and peptide abundances were determined, and a network was inferred using Gaussian graphical modeling (GGM), allowing an investigation of direct associations. This study showed that signatures of (1) specific mechanisms of transport of different groups of proteins, (2) proteolytic degradation by proteases and aminopeptidases, and (3) coagulation and complement activation are present in human milk. These results show the value of an integrated approach in evaluating large-scale omics data sets and provide valuable information for studies that aim to associate protein or peptide profiles from biofluids such as milk with specific physiological characteristics.


Assuntos
Leite Humano , Proteoma , Recém-Nascido , Humanos , Leite Humano/química , Proteoma/metabolismo , Espectrometria de Massas em Tandem/métodos , Estudos de Coortes , Peptídeos/metabolismo , Proteínas do Leite/análise
3.
Front Immunol ; 13: 977470, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311719

RESUMO

Background: The human milk proteome comprises a vast number of proteins with immunomodulatory functions, but it is not clear how this relates to allergy of the mother or allergy development in the breastfed infant. This study aimed to explore the relation between the human milk proteome and allergy of both mother and child. Methods: Proteins were analyzed in milk samples from a subset of 300 mother-child dyads from the Canadian CHILD Cohort Study, selected based on maternal and child allergy phenotypes. For this selection, the definition of "allergy" included food allergy, eczema, allergic rhinitis, and asthma. Proteins were analyzed with non-targeted shotgun proteomics using filter-aided sample preparation (FASP) and nanoLC-Orbitrap-MS/MS. Protein abundances, based on label-free quantification, were compared using multiple statistical approaches, including univariate, multivariate, and network analyses. Results: Using univariate analysis, we observed a trend that milk for infants who develop an allergy by 3 years of age contains higher abundances of immunoglobulin chains, irrespective of the allergy status of the mother. This observation suggests a difference in the milk's immunological potential, which might be related to the development of the infant's immune system. Furthermore, network analysis showed overall increased connectivity of proteins in the milk of allergic mothers and milk for infants who ultimately develop an allergy. This difference in connectivity was especially noted for proteins involved in the protein translation machinery and may be due to the physiological status of the mother, which is reflected in the interconnectedness of proteins in her milk. In addition, it was shown that network analysis complements the other methods for data analysis by revealing complex associations between the milk proteome and mother-child allergy status. Conclusion: Together, these findings give new insights into how the human milk proteome, through differences in the abundance of individual proteins and protein-protein associations, relates to the allergy status of mother and child. In addition, these results inspire new research directions into the complex interplay of the mother-milk-infant triad and allergy.


Assuntos
Hipersensibilidade Alimentar , Leite Humano , Humanos , Lactente , Feminino , Proteoma , Mães , Estudos de Coortes , Espectrometria de Massas em Tandem , Canadá
4.
J Proteome Res ; 21(4): 1002-1016, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104145

RESUMO

Human milk is a dynamic biofluid, and its detailed composition receives increasing attention. While most studies focus on changes over time or differences between maternal characteristics, interindividual variation receives little attention. Nevertheless, a comprehensive insight into this can help interpret human milk studies and help human milk banks provide targeted milk for recipients. This study aimed to map interindividual variation in the human milk proteome, peptidome, and metabolome and to investigate possible explanations for this variation. A set of 286 milk samples was collected from 29 mothers in the third month postpartum. Samples were pooled per mother, and proteins, peptides, and metabolites were analyzed. A substantial coefficient of variation (>100%) was observed for 4.6% and 36.2% of the proteins and peptides, respectively. In addition, using weighted correlation network analysis (WGCNA), 5 protein and 11 peptide clusters were obtained, showing distinct characteristics. With this, several associations were found between the different data sets and with specific sample characteristics. This study provides insight into the dynamics of human milk protein, peptide, and metabolite composition. In addition, it will support future studies that evaluate the effect size of a parameter of interest by enabling a comparison with natural variability.


Assuntos
Leite Humano , Proteoma , Feminino , Humanos , Metaboloma , Proteínas do Leite/metabolismo , Leite Humano/química , Peptídeos/análise , Proteoma/análise
5.
Nutrients ; 12(4)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331315

RESUMO

Human milk contains proteins and/or protein fragments that originate from nonhuman organisms. These proteinaceous molecules, of which the secretion might be related to the mother's allergy status, could be involved in the development of the immune system of the infant. This may lead, for example, to sensitization or the induction of allergen-specific tolerance. The aim of this study was to investigate the relation between maternal allergy and the levels of nonhuman proteinaceous molecules in their milk. In this study, we analysed trypsin-digested human milk serum proteins of 10 allergic mothers and 10 nonallergic mothers. A search was carried out to identify peptide sequences originating from bovine or other allergenic proteins. Several methods were applied to confirm the identification of these sequences, and the differences between both groups were investigated. Out of the 78 identified nonhuman peptide sequences, 62 sequences matched Bos taurus proteins. Eight peptide sequences of bovine ß -lactoglobulin had significantly higher levels in milk from allergic mothers than in milk from nonallergic mothers. Dietary bovine ß -lactoglobulin may be absorbed through the intestinal barrier and secreted into human milk. This seems to be significantly higher in allergic mothers and might have consequences for the development of the immune system of their breastfed infant.


Assuntos
Alérgenos/imunologia , Aleitamento Materno , Hipersensibilidade Alimentar/imunologia , Lactoglobulinas/análise , Lactoglobulinas/imunologia , Leite Humano/química , Mães , Animais , Bovinos , Feminino , Humanos , Lactente , Lactoglobulinas/metabolismo , Leite/química , Hipersensibilidade a Leite/imunologia , Leite Humano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...