Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 19(10): 1941-1951, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36808176

RESUMO

What measurable physical properties allow one to distinguish surfactant-stabilised from Pickering emulsions? Whereas surfactants influence oil/water interfaces by lowering the oil/water interfacial tension, particles are assumed to have little effect on the interfacial tension. Here we perform interfacial tension (IFT) measurements on three different systems: (1) soybean oil and water with ethyl cellulose nanoparticles (ECNPs), (2) silicone oil and water with the globular protein bovine serum albumin (BSA), and (3) sodium dodecyl sulfate (SDS) solutions and air. The first two systems contain particles, while the third system contains surfactant molecules. We observe a significant decrease in interfacial tension with increasing particle/molecule concentration in all three systems. We analyse the surface tension data using the Gibbs adsorption isotherm and the Langmuir equation of state for the surface, resulting in surprisingly high adsorption densities for the particle-based systems. These seem to behave very much like the surfactant system: the decrease in tension is due to the presence of many particles at the interface, each with an adsorption energy of a few kBT. Dynamic interfacial tension measurements show that the systems are in equilibrium, and that the characteristic time scale for adsorption is much longer for particle-based systems than for surfactants, in line with their size difference. In addition, the particle-based emulsion is shown to be less stable against coalescence than the surfactant-stabilised emulsion. This leaves us with the conclusion that we are not able to make a clear distinction between the surfactant-stabilised and Pickering emulsions.

2.
Langmuir ; 36(27): 7795-7800, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32543206

RESUMO

There is a large debate on the destabilization mechanism of emulsions. We present a simple technique using mechanical compression to destabilize oil-in-water emulsions. Upon compression of the emulsion, the continuous aqueous phase is squeezed out, while the dispersed oil phase progressively deforms from circular to honeycomb-like shapes. The films that separate the oil droplets are observed to thin and break at a critical oil/water ratio, leading to coalescence events. Electrostatic interactions and local droplet rearrangements do not determine film rupture. Instead, the destabilization occurs like an avalanche propagating through the system, starting at areas where the film thickness is smallest.

3.
Sci Rep ; 7(1): 17044, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29213089

RESUMO

Colloidal glasses formed from hard spheres, nearly hard spheres, ellipsoids and platelets or their attractive variants, have been studied in great detail. Complementing and constraining theoretical approaches and simulations, the many different types of model systems have significantly advanced our understanding of the glass transition in general. Despite their early prediction, however, no experimental charged sphere glasses have been found at low density, where the competing process of crystallization prevails. We here report the formation of a transient amorphous solid formed from charged polymer spheres suspended in thoroughly deionized water at volume fractions of 0.0002-0.01. From optical experiments, we observe the presence of short-range order and an enhanced shear rigidity as compared to the stable polycrystalline solid of body centred cubic structure. On a density dependent time scale of hours to days, the amorphous solid transforms into this stable structure. We further present preliminary dynamic light scattering data showing the evolution of a second slow relaxation process possibly pointing to a dynamic heterogeneity known from other colloidal glasses and gels. We compare our findings to the predicted phase behaviour of charged sphere suspensions and discuss possible mechanisms for the formation of this peculiar type of colloidal glass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...