Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Yeast Res ; 21(5)2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34100921

RESUMO

All known facultatively fermentative yeasts require molecular oxygen for growth. Only in a small number of yeast species, these requirements can be circumvented by supplementation of known anaerobic growth factors such as nicotinate, sterols and unsaturated fatty acids. Biosynthetic oxygen requirements of yeasts are typically small and, unless extensive precautions are taken to minimize inadvertent entry of trace amounts of oxygen, easily go unnoticed in small-scale laboratory cultivation systems. This paper discusses critical points in the design of anaerobic yeast cultivation experiments in anaerobic chambers and laboratory bioreactors. Serial transfer or continuous cultivation to dilute growth factors present in anaerobically pre-grown inocula, systematic inclusion of control strains and minimizing the impact of oxygen diffusion through tubing are identified as key elements in experimental design. Basic protocols are presented for anaerobic-chamber and bioreactor experiments.


Assuntos
Reatores Biológicos , Leveduras , Anaerobiose , Fermentação , Oxigênio
2.
mBio ; 12(3): e0096721, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34154398

RESUMO

Neocallimastigomycetes are unique examples of strictly anaerobic eukaryotes. This study investigates how these anaerobic fungi bypass reactions involved in synthesis of pyridine nucleotide cofactors and coenzyme A that, in canonical fungal pathways, require molecular oxygen. Analysis of Neocallimastigomycetes proteomes identified a candidate l-aspartate-decarboxylase (AdcA) and l-aspartate oxidase (NadB) and quinolinate synthase (NadA), constituting putative oxygen-independent bypasses for coenzyme A synthesis and pyridine nucleotide cofactor synthesis. The corresponding gene sequences indicated acquisition by ancient horizontal gene transfer (HGT) events involving bacterial donors. To test whether these enzymes suffice to bypass corresponding oxygen-requiring reactions, they were introduced into fms1Δ and bna2Δ Saccharomyces cerevisiae strains. Expression of nadA and nadB from Piromyces finnis and adcA from Neocallimastix californiae conferred cofactor prototrophy under aerobic and anaerobic conditions. This study simulates how HGT can drive eukaryotic adaptation to anaerobiosis and provides a basis for elimination of auxotrophic requirements in anaerobic industrial applications of yeasts and fungi. IMPORTANCE NAD (NAD+) and coenzyme A (CoA) are central metabolic cofactors whose canonical biosynthesis pathways in fungi require oxygen. Anaerobic gut fungi of the Neocallimastigomycota phylum are unique eukaryotic organisms that adapted to anoxic environments. Analysis of Neocallimastigomycota genomes revealed that these fungi might have developed oxygen-independent biosynthetic pathways for NAD+ and CoA biosynthesis, likely acquired through horizontal gene transfer (HGT) from prokaryotic donors. We confirmed functionality of these putative pathways under anaerobic conditions by heterologous expression in the yeast Saccharomyces cerevisiae. This approach, combined with sequence comparison, offers experimental insight on whether HGT events were required and/or sufficient for acquiring new traits. Moreover, our results demonstrate an engineering strategy for enabling S. cerevisiae to grow anaerobically in the absence of the precursor molecules pantothenate and nicotinate, thereby contributing to alleviate oxygen requirements and to move closer to prototrophic anaerobic growth of this industrially relevant yeast.


Assuntos
Coenzima A/biossíntese , Fungos/metabolismo , Redes e Vias Metabólicas , Nucleotídeos/metabolismo , Oxigênio/metabolismo , Piridinas/metabolismo , Saccharomyces cerevisiae/genética , Anaerobiose , Fungos/genética , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Neocallimastix/genética , Piromyces/genética , Proteoma , Saccharomyces cerevisiae/metabolismo
3.
FEMS Yeast Res ; 19(6)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31425603

RESUMO

In Saccharomyces cerevisiae, acyl-coenzyme A desaturation by Ole1 requires molecular oxygen. Tween 80, a poly-ethoxylated sorbitan-oleate ester, is therefore routinely included in anaerobic growth media as a source of unsaturated fatty acids (UFAs). During optimization of protocols for anaerobic bioreactor cultivation of this yeast, we consistently observed growth of the laboratory strain S. cerevisiae CEN.PK113-7D in media that contained the anaerobic growth factor ergosterol, but lacked UFAs. To minimize oxygen contamination, additional experiments were performed in an anaerobic chamber. After anaerobic precultivation without ergosterol and Tween 80, strain CEN.PK113-7D and a congenic ole1Δ strain both grew during three consecutive batch-cultivation cycles on medium that contained ergosterol, but not Tween 80. During these three cycles, no UFAs were detected in biomass of cultures grown without Tween 80, while contents of C10 to C14 saturated fatty acids were higher than in biomass from Tween 80-supplemented cultures. In contrast to its UFA-independent anaerobic growth, aerobic growth of the ole1Δ strain strictly depended on Tween 80 supplementation. This study shows that the requirement of anaerobic cultures of S. cerevisiae for UFA supplementation is not absolute and provides a basis for further research on the effects of lipid composition on yeast viability and robustness.


Assuntos
Anaerobiose , Suplementos Nutricionais/análise , Ácidos Graxos Insaturados/análise , Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Biomassa , Reatores Biológicos , Meios de Cultura , Ergosterol/análise , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/biossíntese , Lipídeos/análise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Estearoil-CoA Dessaturase/genética
4.
J Inorg Biochem ; 192: 98-106, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30616070

RESUMO

Escherichia coli ZraP (zinc resistance associated protein) is the major Zn containing soluble protein under Zn stress conditions. ZraP is the accessory protein of a bacterial two-component, Zn2+ sensitive signal transduction system ZraSR. ZraP has also been reported to act as a Zn2+ dependent molecular chaperone. An explanation why ZraP is the major Zn protein under the stress condition of Zn2+ overload (0.2 mM) has remained elusive. We have recombinantly produced E. coli ZraP and measured Zn2+ and Cu2+ affinity in-vitro using Isothermal Titration Calorimetry. ZraP has a significantly higher affinity for Cu2+ than for Zn2+. Mutation of the conserved Cys102 to Ala or Ser resulted in a change of the oligomeric state of the protein. Mutation of the conserved His107 to Ala did not affect the zinc binding affinity or the oligomeric state of the protein. Deletion of the ZraP coding gene from the E. coli genome resulted in a phenotype with tolerance to very high zinc concentrations (up to 2.5 mM) that were lethal to wild type E. coli. These results exclude a direct role for ZraP in Zn2+ tolerance in E. coli.


Assuntos
Tolerância a Medicamentos/genética , Proteínas de Escherichia coli , Escherichia coli , Estresse Fisiológico/efeitos dos fármacos , Zinco/farmacologia , Substituição de Aminoácidos , Cobre/farmacologia , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Mutação de Sentido Incorreto , Estresse Fisiológico/genética
5.
FEMS Yeast Res ; 19(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30252062

RESUMO

Expression of a heterologous xylose isomerase, deletion of the GRE3 aldose-reductase gene and overexpression of genes encoding xylulokinase (XKS1) and non-oxidative pentose-phosphate-pathway enzymes (RKI1, RPE1, TAL1, TKL1) enables aerobic growth of Saccharomyces cerevisiae on d-xylose. However, literature reports differ on whether anaerobic growth on d-xylose requires additional mutations. Here, CRISPR-Cas9-assisted reconstruction and physiological analysis confirmed an early report that this basic set of genetic modifications suffices to enable anaerobic growth on d-xylose in the CEN.PK genetic background. Strains that additionally carried overexpression cassettes for the transaldolase and transketolase paralogs NQM1 and TKL2 only exhibited anaerobic growth on d-xylose after a 7-10 day lag phase. This extended lag phase was eliminated by increasing inoculum concentrations from 0.02 to 0.2 g biomass L-1. Alternatively, a long lag phase could be prevented by sparging low-inoculum-density bioreactor cultures with a CO2/N2-mixture, thus mimicking initial CO2 concentrations in high-inoculum-density, nitrogen-sparged cultures, or by using l-aspartate instead of ammonium as nitrogen source. This study resolves apparent contradictions in the literature on the genetic interventions required for anaerobic growth of CEN.PK-derived strains on d-xylose. Additionally, it indicates the potential relevance of CO2 availability and anaplerotic carboxylation reactions for anaerobic growth of engineered S. cerevisiae strains on d-xylose.


Assuntos
Fermentação , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Aerobiose , Anaerobiose , Reatores Biológicos/microbiologia , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Meios de Cultura/química , Edição de Genes , Redes e Vias Metabólicas/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...