Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000683

RESUMO

Chitosan is a biopolymer with unique properties that have attracted considerable attention in various scientific fields in recent decades. Although chitosan is known for its poor electrical and mechanical properties, there is interest in producing chitosan-based materials reinforced with carbon-based materials to impart exceptional properties such as high electrical conductivity and high Young's modulus. This study describes the synergistic effect of carbon-based materials, such as reduced graphene oxide and carbon nanotubes, in improving the electrical, optical, and mechanical properties of chitosan-based films. Our findings demonstrate that the incorporation of reduced graphene oxide influences the crystallinity of chitosan, which considerably impacts the mechanical properties of the films. However, the incorporation of a reduced graphene oxide-carbon nanotube complex not only significantly improves the mechanical properties but also significantly improves the optical and electrical properties, as was demonstrated from the photoluminescence studies and resistivity measurements employing the four-probe technique. This is a promising prospect for the synthesis of new materials, such as biopolymer films, with potential applications in optical, electrical, and biomedical bioengineering applications.

2.
Polymers (Basel) ; 14(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35215587

RESUMO

A viable alternative for the next generation of wound dressings is the preparation of electrospun fibers from biodegradable polymers in combination with inorganic nanoparticles. A poly(vinyl alcohol)-chitosan-silver nanoparticles (PVA-CTS-Ag NPs) system has been developed for antimicrobial and wound healing applications. Here, the preparation of PVA-CTS-Ag electrospun fibers using a two-step process is reported in order to analyze changes in the microstructural, mechanical, and antibacterial properties and confirm their potential application in the biomedical field. The Ag nanoparticles were well-dispersed into the chitosan matrix and their cubic structure after the electrospinning process was also retained. The Ag NPs displayed an average diameter of ~33 nm into the CTS matrix, while the size increased up to 213 nm in the PVA-CTS-Ag(NPs) fibers. It was observed that strong chemical interactions exist between organic (CTS) and inorganic phases through nitrogenous groups and the oxygen of the glycosidic bonds. A defect-free morphology was obtained in the PVA-CTS-Ag NPs final fibers with an important enhancement of the mechanical properties as well as of the antibacterial activity compared with pure PVA-CTS electrospun fibers. The results of antibacterial activity against E. coli and S. aureus confirmed that PVA-CTS-Ag(NPs) fibers can be potentially used as a material for biomedical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...