Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 123(12): 7854-7889, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37253224

RESUMO

With the rising diabetic population, the demand for glucose sensing devices has also been on an increasing trend. Accordingly, the field of glucose biosensors for diabetes management has witnessed tremendous scientific and technological advancements since the introduction of the first enzymatic glucose biosensor in the 1960s. Among these, electrochemical biosensors hold considerable potential for tracking dynamic glucose profiles in real time. The recent evolution of wearable devices has opened opportunities to use alternative body fluids in a pain-free, noninvasive or minimally invasive manner. This review aims to present a comprehensive report about the status and promise of wearable electrochemical sensors for on-body glucose monitoring. We start by highlighting the importance of diabetes management and how sensors can contribute toward its effective monitoring. We then discuss the electrochemical glucose sensing mechanisms, evolution of such glucose sensors over time, different versions of wearable glucose biosensors targeting various biofluids, and multiplexed wearable sensors toward optimal diabetes management. Finally, we focus on the commercial aspects of wearable glucose biosensors, starting with existing continuous glucose monitors, followed by other emerging sensing technologies, and concluding with highlighting the key prospects toward personalized diabetes management in connection to an autonomous closed-loop artificial pancreas.


Assuntos
Técnicas Biossensoriais , Diabetes Mellitus , Dispositivos Eletrônicos Vestíveis , Humanos , Automonitorização da Glicemia , Glicemia , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/terapia
2.
Biosensors (Basel) ; 13(4)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37185542

RESUMO

Electrochemical biosensors are widely used in a multitude of applications, such as medical, nutrition, research, among other fields. These sensors have been historically used and have not undergone many changes in terms of the involved electrochemical processes. In this work, we propose a new approach on the immobilization and enhancement of the electrochemical properties of the sensing layers through the control and bioconjugation of hemoproteins (hemoglobin, myoglobin, and cytochrome C) on anisotropic gold nanoparticles (gold nanotriangles (AuNTs)). The hemeproteins and the AuNTs are mixed in a solution, resulting in stable bioconjugates that are deposited onto the electrode surface to obtain the biosensors. All the systems proposed herein exhibited direct well-defined redox responses, highlighting the key role of the AuNTs acting as mediators of such electron transfers. Several protein layers surrounding the AuNTs are electroactive, as demonstrated from the charge measured by cyclic voltammetry. The retention of the stability of the hemeproteins once they are part of the bioconjugates is evidenced towards the electrocatalytic reduction of hydrogen peroxide, oxygen, and nitrite. The parameters obtained for the proposed biosensors are similar or even lower than those previously reported for similar systems based on nanomaterials, and they exhibit attractive properties that make them potential candidates for the latest developments in the field of sensing devices.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Oxirredução , Técnicas Biossensoriais/métodos , Eletrodos , Hemoglobinas/química
3.
Biosens Bioelectron ; 231: 115300, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058961

RESUMO

Plant stress responses involve a suite of genetically encoded mechanisms triggered by real-time interactions with their surrounding environment. Although sophisticated regulatory networks maintain proper homeostasis to prevent damage, the tolerance thresholds to these stresses vary significantly among organisms. Current plant phenotyping techniques and observables must be better suited to characterize the real-time metabolic response to stresses. This impedes practical agronomic intervention to avoid irreversible damage and limits our ability to breed improved plant organisms. Here, we introduce a sensitive, wearable electrochemical glucose-selective sensing platform that addresses these problems. Glucose is a primary plant metabolite, a source of energy produced during photosynthesis, and a critical molecular modulator of various cellular processes ranging from germination to senescence. The wearable-like technology integrates a reverse iontophoresis glucose extraction capability with an enzymatic glucose biosensor that offers a sensitivity of 22.7 nA/(µM·cm2), a limit of detection (LOD) of 9.4 µM, and a limit of quantification (LOQ) of 28.5 µM. The system's performance was validated by subjecting three different plant models (sweet pepper, gerbera, and romaine lettuce) to low-light and low-high temperature stresses and demonstrating critical differential physiological responses associated with their glucose metabolism. This technology enables non-invasive, non-destructive, real-time, in-situ, and in-vivo identification of early stress response in plants and provides a unique tool for timely agronomic management of crops and improving breeding strategies based on the dynamics of genome-metabolome-phenome relationships.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Produtos Agrícolas , Glucose/metabolismo , Fotossíntese , Agricultura , Estresse Fisiológico
4.
Talanta ; 254: 124122, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459870

RESUMO

The development of a non-invasive sensing technology that allows collection of interstitial fluid (ISF) lactate and its subsequent analysis without exertion requirement, could enable lactate monitoring from rested individuals. Here, we describe a wearable, soft epidermal adhesive patch that integrates a reverse iontophoretic (RI) system, and an amperometric lactate biosensor placed on the anodic electrode with a porous hydrogel reservoir, for simultaneous ISF lactate extraction and quantification via electrochemical sensing, respectively. The iontophoretic system includes agarose hydrogels for preventing skin electrocution, while a porous polyvinyl alcohol-based hydrogel facilitates the effective transport of lactate from skin to the biosensor. The flexible skin-worn device tested on healthy individuals at rest showed rapid lactate collection from the ISF after 10 min of reverse iontophoresis with no evidence of discomfort or irritation to the skin. Detailed characterization of the enzymatic biosensor before and during on-body trials along with relevant control experiments confirmed the efficient extraction and selective detection of ISF lactate. Such an epidermal technology represents the first demonstration of an all-in-one platform that integrates non-invasive collection and subsequent analysis of lactate from iontophoretically extracted ISF toward point-of-care operation.


Assuntos
Técnicas Biossensoriais , Ácido Láctico , Humanos , Ácido Láctico/análise , Iontoforese , Líquido Extracelular/química , Epiderme/química , Hidrogéis
5.
Biosens Bioelectron ; 220: 114891, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379173

RESUMO

The interest in ketone bodies (KBs) has intensified recently as they play significant roles in healthcare, nutrition, and wellness applications. We present a disposable electrochemical sensing strip for rapid decentralized detection of ß-hydroxybutyrate (HB), one of the dominant physiological KBs, in saliva. The new salivary enzymatic HB sensor strip relies on a gold-coated screen-printed carbon electrode modified with a reagent layer containing toluidine blue O (TBO mediator), ß-hydroxybutyrate dehydrogenase (HBD enzyme), and the HBD cofactor nicotinamide adenine dinucleotide (NAD+ coenzyme), along with carbon nanotubes (CNTs) and chitosan (Chit) for enhancing the sensor's sensitivity and for encapsulating the enzyme and its cofactor, respectively. The systematic optimization resulted in an attractive analytical performance, with a rapid response time within 60 s, a wide HB dynamic detection range from 0.1 to 3.0 mM along with a low limit of detection (50 µM HB) in an artificial saliva medium. The strip displays high selectivity for HB over acetoacetate (AcAc) and other interferences (i.e., acetaminophen, ascorbic acid, glucose, lactic acid, and uric acid), good reproducibility, and high stability towards temperature or pH effects. The new disposable sensing strip system, coupled with a hand-held electrochemical analyzer, showed rapid HB monitoring in human saliva samples collected from healthy volunteers, with similar temporal profiles to those obtained in parallel capillary blood measurements in response to the intake of keto supplements. This strip enables efficient, reliable, and near real-time salivary HB detection to track non-invasively the dynamics of HB concentrations after intaking commercial supplements towards diverse healthcare and nutrition applications.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Humanos , Corpos Cetônicos , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Eletrodos , NAD , Atenção à Saúde , Técnicas Eletroquímicas
6.
ACS Sens ; 7(12): 3973-3981, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36512725

RESUMO

ß-Hydroxybutyrate (HB) is one of the main physiological ketone bodies that play key roles in human health and wellness. Besides their important role in diabetes ketoacidosis, ketone bodies are currently receiving tremendous attention for personal nutrition in connection to the growing popularity of oral ketone supplements. Accordingly, there are urgent needs for developing a rapid, simple, and low-cost device for frequent onsite measurements of ß-hydroxybutyrate (HB), one of the main physiological ketone bodies. However, real-time profiling of dynamically changing HB concentrations is challenging and still limited to laboratory settings or to painful and invasive measurements (e.g., a commercial blood ketone meter). Herein, we address the critical need for pain-free frequent HB measurements in decentralized settings and report on a reliable noninvasive, simple, and rapid touch-based sweat HB testing and on its ability to track dynamic HB changes in secreted fingertip sweat, following the intake of commercial ketone supplements. The new touch-based HB detection method relies on an instantaneous collection of the fingertip sweat at rest on a porous poly(vinyl alcohol) (PVA) hydrogel that transports the sweat to a biocatalytic layer, composed of the ß-hydroxybutyrate dehydrogenase (HBD) enzyme and its nicotinamide adenine dinucleotide (NAD+) cofactor, covering the modified screen-printed carbon working electrode. As a result, the sweat HB can be measured rapidly by the mediated oxidation reaction of the nicotinamide adenine dinucleotide (NADH) product. A personalized HB dose-response relationship is demonstrated within a group of healthy human subjects taking commercial ketone supplements, along with a correlation between the sweat and capillary blood HB levels. Furthermore, a dual disposable biosensing device, consisting of neighboring ketone and glucose enzyme electrodes on a single-strip substrate, has been developed toward the simultaneous touch-based detection of dynamically changing sweat HB and glucose levels, following the intake of ketone and glucose drinks.


Assuntos
Glucose , Corpos Cetônicos , Humanos , Corpos Cetônicos/análise , Glucose/análise , Ácido 3-Hidroxibutírico , Tato , NAD , Autoteste , Suor/química , Cetonas
7.
Small ; : e2206064, 2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36433842

RESUMO

Sweat is an important biofluid presents in the body since it regulates the internal body temperature, and it is relatively easy to access on the skin unlike other biofluids and contains several biomarkers that are also present in the blood. Although sweat sensing devices have recently displayed tremendous progress, most of the emerging devices primarily focus on the sensor development, integration with electronics, wearability, and data from in vitro studies and short-term on-body trials during exercise. To further the advances in sweat sensing technology, this review aims to present a comprehensive report on the approaches to access and manage sweat from the skin toward improved sweat collection and sensing. It is begun by delineating the sweat secretion mechanism through the skin, and the historical perspective of sweat, followed by a detailed discussion on the mechanisms governing sweat generation and management on the skin. It is concluded by presenting the advanced applications of sweat sensing, supported by a discussion of robust, extended-operation epidermal wearable devices aiming to strengthen personalized healthcare monitoring systems.

8.
Sens Actuators B Chem ; 369: 132217, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35755181

RESUMO

The development of DNA-sensing platforms based on new synthetized Methylene Blue functionalized carbon nanodots combined with different shape gold nanostructures (AuNs), as a new pathway to develop a selective and sensitive methodology for SARS-CoV-2 detection is presented. A mixture of gold nanoparticles and gold nanotriangles have been synthetized to modify disposable electrodes that act as an enhanced nanostructured electrochemical surface for DNA probe immobilization. On the other hand, modified carbon nanodots prepared a la carte to contain Methylene Blue (MB-CDs) are used as electrochemical indicators of the hybridization event. These MB-CDs, due to their structure, are able to interact differently with double and single-stranded DNA molecules. Based on this strategy, target sequences of the SARS-CoV-2 virus have been detected in a straightforward way and rapidly with a detection limit of 2.00 aM. Moreover, this platform allows the detection of the SARS-CoV-2 sequence in the presence of other viruses, and also a single nucleotide polymorphism (SNPs). The developed approach has been tested directly on RNA obtained from nasopharyngeal samples from COVID-19 patients, avoiding any amplification process. The results agree well with those obtained by RT-qPCR or reverse transcription quantitative polymerase chain reaction technique.

9.
Talanta ; 247: 123542, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35609482

RESUMO

In this work we present a powerful, affordable, and portable biosensor to develop Point of care (POC) SARS-CoV-2 virus detection. It is constructed from a fast, low cost, portable and electronically automatized potentiostat that controls the potential applied to a disposable screen-printed electrochemical platform and the current response. The potentiostat was designed to get the best signal-to-noise ratio, a very simple user interface offering the possibility to be used by any device (computer, mobile phone or tablet), to have a small and portable size, and a cheap manufacturing cost. Furthermore, the device includes as main components, a data acquisition board, a controller board and a hybridization chamber with a final size of 10 × 8 × 4 cm. The device has been tested by detecting specific SARS-CoV-2 virus sequences, reaching a detection limit of 22.1 fM. Results agree well with those obtained using a conventional potentiostat, which validate the device and pave the way to the development of POC biosensors. In this sense, the device has finally applied to directly detect the presence of the virus in nasopharyngeal samples of COVID-19 patients and results confirm its utility for the rapid detection infected samples avoiding any amplification process.


Assuntos
Técnicas Biossensoriais , COVID-19 , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , Humanos , Hibridização de Ácido Nucleico , Sistemas Automatizados de Assistência Junto ao Leito , SARS-CoV-2
10.
Mikrochim Acta ; 189(4): 171, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364748

RESUMO

Gold nanotriangles (AuNTs) functionalized with dithiolated oligonucleotides have been employed to develop an amplification-free electrochemical biosensor for SARS-CoV-2 in patient samples. Gold nanotriangles, prepared through a seed-mediated growth method and exhaustively characterized by different techniques, serve as an improved electrochemical platform and for DNA probe immobilization. Azure A is used as an electrochemical indicator of the hybridization event. The biosensor detects either single stranded DNA or RNA sequences of SARS-CoV-2 of different lengths, with a low detection limit of 22.2 fM. In addition, it allows to detect point mutations in SARS-CoV-2 genome with the aim to detect more infective SARS-CoV-2 variants such as Alpha, Beta, Gamma, Delta, and Omicron. Results obtained with the biosensor in nasopharyngeal swab samples from COVID-19 patients show the possibility to clearly discriminate between non-infected and infected patient samples as well as patient samples with different viral load. Furthermore, the results correlate well with those obtained by the gold standard technique RT-qPCR, with the advantage of avoiding the amplification process and the need of sophisticated equipment.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Hibridização de Ácido Nucleico , Oligonucleotídeos , SARS-CoV-2/genética
11.
Talanta ; 240: 123203, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34998140

RESUMO

This work focuses on the development of an electrochemiluminescent nanostructured DNA biosensor for SARS-CoV-2 detection. Gold nanomaterials (AuNMs), specifically, a mixture of gold nanotriangles (AuNTs) and gold nanoparticles (AuNPs), are used to modified disposable electrodes that serve as an improved nanostructured electrochemiluminescent platform for DNA detection. Carbon nanodots (CDs), prepared by green chemistry, are used as coreactants agents in the [Ru(bpy)3]2+ anodic electrochemiluminescence (ECL) and the hybridization is detected by changes in the ECL signal of [Ru(bpy)3]2+/CDs in combination with AuNMs nanostructures. The biosensor is shown to detect a DNA sequence corresponding to SARS-CoV-2 with a detection limit of 514 aM.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanopartículas Metálicas , Nanoestruturas , DNA , Técnicas Eletroquímicas , Ouro , Humanos , Medições Luminescentes , SARS-CoV-2
12.
Biosens Bioelectron ; 189: 113375, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34087724

RESUMO

This work focuses on the combination of molybdenum disulfide (MoS2) and à la carte functionalized carbon nanodots (CNDs) for the development of DNA biosensors for selective and sensitive detection of pathogens. MoS2 flakes prepared through liquid-phase exfoliation, serves as platform for thiolated DNA probe immobilization, while thionine functionalized carbon nanodots (Thi-CNDs) are used as electrochemical indicator of the hybridization event. Spectroscopic and electrochemical studies confirmed the interaction of Thi-CNDs with DNA. As an illustration of the pathogen biosensor functioning, DNA sequences from InIA gen of Listeria monocytogenes bacteria and open reading frame sequence (ORF1ab) of SARS-CoV-2 virus were detected and quantified with a detection limit of 67.0 fM and 1.01 pM, respectively. Given the paradigmatic selectivity of the DNA hybridization, this approach allows pathogen detection in the presence of other pathogens, demonstrated by the detection of Listeria monocytogenes in presence of Escherichia coli. We note that this design is in principle amenable to any pathogen for which the DNA has been sequenced, including other viruses and bacteria. As example of the application of the method in real samples it has been used to directly detect Listeria monocytogenes in cultures without any DNA Polymerase Chain Reaction (PCR) amplification process.


Assuntos
Técnicas Biossensoriais , COVID-19 , Carbono , Humanos , Molibdênio , Fenotiazinas , SARS-CoV-2
13.
Nanoscale ; 12(2): 658-668, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31829396

RESUMO

The highly packed cetyltrimethylammonium bromide (CTAB) bilayer built up on the surface of gold nanorods (AuNRs) when synthesized by the seed-mediated procedure hampers the complete ligand exchange under experimental conditions that preserves the stability of the dispersions. In the present work, a ligand exchange protocol by using carboxy-terminated alkanethiols of different chain lengths by means of a green approach that uses only aqueous solutions is presented. The protocol is based on the knowledge of the stability in the aqueous solution of both the starting CTAB-AuNRs and the final products that help in the choice of the experimental conditions used for ligand exchange. The characterization of the CTAB protective layer as well as the study of its colloidal stability in solution has helped us to design an appropriate methodology. Cyclic voltammetry of CTAB-AuNRs demonstrates the high stability of the bilayer showing the existence of a two-dimensional phase transition from a highly ordered to a less organized phase. Other techniques such as XPS, FT-IR and Raman spectroscopy provide information about the structure of the layer and UV-visible-NIR spectroscopy establishes the stability conditions in aqueous solution. We have chosen an exchange procedure for 11-mercaptoundecanoic acid (MUA) and 16-mercaptohexadecanoic acid (MHDA) based on a one-pot methodology under conditions where all the species involved are stable. The protocol, however, can be extended to different chemical functionalities that are considered useful to be applied in living systems. Under these conditions the complete exchange of CTAB by the mercaptoderivatives was successful as demonstrated by the different characterization techniques used: UV-visible-NIR, FT-IR, Raman, XPS spectroscopy, cyclic voltammetry and transmission electron microscopy (TEM).

14.
Talanta ; 176: 667-673, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28917805

RESUMO

In this work, we report on the electrochemical behavior of bioconjugates prepared with gold nanoparticles (AuNP) capped with three different molecular layers (citrate anions, 6-mercaptopurine and ω-mercaptoundecanoic acid) and the protein hemoglobin (Hb). Freshly formed bioconjugates are deposited on a glassy carbon electrode and assayed for electroactivity. A pair of redox peaks with formal potential at -0.37V is obtained, in contrast with the free Hb protein that is inactive on the glassy carbon substrate. The redox response is typical for quasi-reversible processes allowing the determination of the electron transfer rate constant for the three bioconjugates. Additional evidence of the structural integrity of protein upon forming the bioconjugate is obtained by monitoring the electrochemical response of the Hb heme Fe(III)/Fe(II) redox couple as a function of solution pH. Moreover, the Hb forming the protein corona around the AuNPs show good electrocatalytic activity for the reduction of hydrogen peroxide and oxygen. It has been found that only the first layer of Hb surrounding the AuNPs are electroactive, although some part of the second layer also contribute, pointing to the role of the AuNP in the electrochemical response.


Assuntos
Ouro/química , Hemoglobinas/química , Nanopartículas Metálicas/química , Carbono/química , Catálise , Ácido Cítrico/química , Eletroquímica , Eletrodos , Ácidos Graxos/química , Peróxido de Hidrogênio/química , Mercaptopurina/química , Oxigênio/química , Compostos de Sulfidrila/química
15.
J Colloid Interface Sci ; 505: 1165-1171, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28715860

RESUMO

The identification of the factors that dictate the formation and physicochemical properties of protein-nanomaterial bioconjugates are important to understand their behavior in biological systems. The present work deals with the formation and characterization of bioconjugates made of the protein hemoglobin (Hb) and gold nanoparticles (AuNP) capped with three different molecular layers (citrate anions (c), 6-mercaptopurine (MP) and ω-mercaptoundecanoic acid (MUA)). The main focus is on the behavior of the bioconjugates in aqueous buffered solutions in a wide pH range. The stability of the bioconjugates have been studied by UV-visible spectroscopy by following the changes in the localized surface resonance plasmon band (LSRP), Dynamic light scattering (DLS) and zeta-potential pH titrations. It has been found that they are stable in neutral and alkaline solutions and, at pH lower than the protein isoelectric point, aggregation takes place. Although the surface chemical properties of the AuNPs confer different properties in respect to colloidal stability, once the bioconjugates are formed their properties are dictated by the Hb protein corona. The protein secondary structure, as analyzed by Attenuated total reflectance infrared (ATR-IR) spectroscopy, seems to be maintained under the conditions of colloidal stability but some small changes in protein conformation take place when the bioconjugates aggregate. These findings highlight the importance to keep the protein structure upon interaction with nanomaterials to drive the stability of the bioconjugates.


Assuntos
Ouro/química , Hemoglobinas/química , Hemoglobinas/metabolismo , Nanopartículas Metálicas/química , Humanos , Concentração de Íons de Hidrogênio , Conformação Proteica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...