Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(16): 23610-23622, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418793

RESUMO

The aim of this study was to evaluate and compare the effects on biochemical parameters and organosomatic indices in the freshwater bivalve Diplodon chilensis exposed to a glyphosate-based formulation under direct and dietary exposures (4 mg a.p./L). After 1, 7, and 14 days of exposure, reduced glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) levels and the activities of glutathione-S- transferase (GST), superoxide dismutase (SOD), and catalase (CAT) were evaluated in the gills and digestive gland. The hepatosomatic (HSI) and branchiosomatic (BSI) indices were also analyzed. Direct and dietary glyphosate-based formulation exposure altered the redox homeostasis in the gills and digestive gland throughout the experimental time, inducing the detoxification response (GST), the antioxidant defenses (SOD, CAT, GSH), and causing lipid peroxidation. After 14 days of exposure, the HSI and BSI increased significantly (43% and 157%, respectively) only in the bivalves under direct exposure. Greater changes in the biochemical parameters were induced by the dietary exposure than by the direct exposure. Furthermore, the gills presented an earlier response compared to the digestive gland. These results suggested that direct and dietary exposure to a glyphosate-based formulation induced oxidative stress in the gills and digestive glands of D. chilensis. Thus, the presence of glyphosate-based formulations in aquatic ecosystems could represent a risk for filter-feeding organisms like bivalves.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Glifosato , Exposição Dietética , Ecossistema , Estresse Oxidativo , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Peroxidação de Lipídeos , Brânquias/metabolismo , Glutationa Transferase/metabolismo , Poluentes Químicos da Água/metabolismo , Biomarcadores/metabolismo
2.
Environ Toxicol Chem ; 36(7): 1775-1784, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28397987

RESUMO

Glyphosate is currently the most widely used herbicide in agricultural production. It generally enters aquatic ecosystems through surface water runoff and aerial drift. We evaluated the effect of glyphosate acid on biochemical parameters of periphyton exposed to concentrations of 1, 3, and 6 mg/L in outdoor mesocosms in the presence and absence of the mussel Limnoperna fortunei. Periphyton ash-free dry weight, chlorophyll a content, carotene/chlorophyll a ratio, lipid peroxidation levels, and superoxide dismutase and catalase activities were determined at days 0, 1, 7, 14, and 26 of the experimental period. Ash-free dry weight was similar between control and glyphosate-treated periphyton in the absence of L. fortunei. The latter had significantly lower carotene to chlorophyll a ratios and enzyme activities, and higher lipid peroxidation levels and chlorophyll a content than the former. These results show an adverse effect of glyphosate on the metabolism of periphyton community organisms, possibly inducing oxidative stress. On the contrary, no differences were observed in any of these variables between control and glyphosate-treated periphyton in the presence of L. fortunei. Mussels probably attenuated the herbicide effects by contributing to glyphosate dissipation. The results also demonstrate that biochemical markers provide useful information that may warn of herbicide impact on periphyton communities. Environ Toxicol Chem 2017;36:1775-1784. © 2016 SETAC.


Assuntos
Biomarcadores/metabolismo , Bivalves/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bivalves/metabolismo , Carotenoides/metabolismo , Catalase/metabolismo , Clorofila/metabolismo , Clorofila A , Ecossistema , Glicina/análise , Glicina/metabolismo , Glicina/toxicidade , Meia-Vida , Herbicidas/análise , Herbicidas/metabolismo , Peroxidação de Lipídeos , Pigmentos Biológicos/análise , Espectrofotometria Ultravioleta , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Glifosato
3.
Ecotoxicol Environ Saf ; 84: 147-54, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22885056

RESUMO

Oxidative stress parameter and antioxidant defense compound as well as enzyme activity were studied in relation to different Cr(VI) concentrations (0, 10, 20, 40 µM) in two strains of Euglena gracilis, one isolated from a polluted river (MAT) and the other acquired from a culture collection (UTEX). Chromium toxicity was measured in the auxotrophic and obligated heterotrophic variants of the two strains. Chromium uptake was higher in auxotrophic cultures, reflected by their higher cell proliferation inhibition and lower IC50 levels compared to heterotrophic ones. In the Cr(VI) treatments a reduction of chlorophyll a and b ratio (Chl a/Chl b) was observed, the ratio of protein to paramylon content was augmented, and total lipid content increased, having the auxotrophic strains the highest values. TBARS content increased significantly only at 40 µM Cr(VI) treatment. Unsaturated fatty acids also increased in the Cr(VI) treatments, with the higher storage lipid (saturated acids) content in the heterotrophic cells. The antioxidant response, such as SOD activity and GSH content, increased with chromium concentration, showing the highest GSH values in the heterotrophic cultures and the SOD enzyme participation in chromium toxicity. The MAT strain had higher IC50 values, higher carbohydrate and saturated acid content, and better response of the antioxidant system than the UTEX one. This strain isolated from the polluted place also showed higher GSH content and SOD activity in control cells and in almost all treated cultures. SOD activity reached a 9-fold increase in both MAT strains. These results suggest that tolerance of MAT strain against Cr(VI) stress is not only related to GSH level and/or biosynthesis capacity but is also related to the participation of the SOD antioxidant enzyme.


Assuntos
Cromo/toxicidade , Euglena gracilis/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Antioxidantes/metabolismo , Carboidratos/análise , Clorofila/metabolismo , Ativação Enzimática/efeitos dos fármacos , Euglena gracilis/metabolismo , Ácidos Graxos/análise , Glutationa/metabolismo , Concentração Inibidora 50 , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...