Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
bioRxiv ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38948740

RESUMO

Background: Hematopoietic transcription factor RUNX1 is expressed from proximal P2 and distal P1 promoter to yield isoforms RUNX1 B and C, respectively. The roles of these isoforms in RUNX1 autoregulation and downstream-gene regulation in megakaryocytes and platelets are unknown. Objectives: To understand the regulation of RUNX1 and its target genes by RUNX1 isoforms. Methods: We performed studies on RUNX1 isoforms in megakaryocytic HEL cells and HeLa cells (lack endogenous RUNX1), in platelets from 85 healthy volunteers administered aspirin or ticagrelor, and on the association of RUNX1 target genes with acute events in 587 patients with cardiovascular disease (CVD). Results: In chromatin immunoprecipitation and luciferase promoter assays, RUNX1 isoforms B and C bound and regulated P1 and P2 promoters. In HeLa cells RUNX1B decreased and RUNX1C increased P1 and P2 activities, respectively. In HEL cells, RUNX1B overexpression decreased RUNX1C and RUNX1A expression; RUNX1C increased RUNX1B and RUNX1A. RUNX1B and RUNX1C regulated target genes (MYL9, F13A1, PCTP, PDE5A and others) differentially in HEL cells. In platelets RUNX1B transcripts (by RNAseq) correlated negatively with RUNX1C and RUNX1A; RUNX1C correlated positively with RUNX1A. RUNX1B correlated positively with F13A1, PCTP, PDE5A, RAB1B, and others, and negatively with MYL9. In our previous studies, RUNX1C transcripts in whole blood were protective against acute events in CVD patients. We found that higher expression of RUNX1 targets F13A1 and RAB31 associated with acute events. Conclusions: RUNX1 isoforms B and C autoregulate RUNX1 and regulate downstream genes in a differential manner and this associates with acute events in CVD.

2.
Blood Adv ; 8(7): 1699-1714, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38330198

RESUMO

ABSTRACT: Platelet α-granules have numerous proteins, some synthesized by megakaryocytes (MK) and others not synthesized but incorporated by endocytosis, an incompletely understood process in platelets/MK. Germ line RUNX1 haplodeficiency, referred to as familial platelet defect with predisposition to myeloid malignancies (FPDMMs), is associated with thrombocytopenia, platelet dysfunction, and granule deficiencies. In previous studies, we found that platelet albumin, fibrinogen, and immunoglobulin G (IgG) were decreased in a patient with FPDMM. We now show that platelet endocytosis of fluorescent-labeled albumin, fibrinogen, and IgG is decreased in the patient and his daughter with FPDMM. In megakaryocytic human erythroleukemia (HEL) cells, small interfering RNA RUNX1 knockdown (KD) increased uptake of these proteins over 24 hours compared with control cells, with increases in caveolin-1 and flotillin-1 (2 independent regulators of clathrin-independent endocytosis), LAMP2 (a lysosomal marker), RAB11 (a marker of recycling endosomes), and IFITM3. Caveolin-1 downregulation in RUNX1-deficient HEL cells abrogated the increased uptake of albumin, but not fibrinogen. Albumin, but not fibrinogen, partially colocalized with caveolin-1. RUNX1 KD resulted in increased colocalization of albumin with flotillin and fibrinogen with RAB11, suggesting altered trafficking of both proteins. The increased uptake of albumin and fibrinogen, as well as levels of caveolin-1, flotillin-1, LAMP2, and IFITM3, were recapitulated by short hairpin RNA RUNX1 KD in CD34+-derived MK. To our knowledge, these studies provide first evidence that platelet endocytosis of albumin and fibrinogen is impaired in some patients with RUNX1-haplodeficiency and suggest that megakaryocytes have enhanced endocytosis with defective trafficking, leading to loss of these proteins by distinct mechanisms. This study provides new insights into mechanisms governing endocytosis and α-granule deficiencies in RUNX1-haplodeficiency.


Assuntos
Transtornos Herdados da Coagulação Sanguínea , Transtornos Plaquetários , Hemostáticos , Leucemia Eritroblástica Aguda , Leucemia Mieloide Aguda , Humanos , Megacariócitos/metabolismo , Caveolina 1/metabolismo , Fibrinogênio/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Endocitose , Albuminas/metabolismo , Imunoglobulina G , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo
3.
Blood Adv ; 6(17): 5100-5112, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35839075

RESUMO

Transcription factor RUNX1 is a master regulator of hematopoiesis and megakaryopoiesis. RUNX1 haplodeficiency (RHD) is associated with thrombocytopenia and platelet granule deficiencies and dysfunction. Platelet profiling of our study patient with RHD showed decreased expression of RAB31, a small GTPase whose cell biology in megakaryocytes (MKs)/platelets is unknown. Platelet RAB31 messenger RNA was decreased in the index patient and in 2 additional patients with RHD. Promoter-reporter studies using phorbol 12-myristate 13-acetate-treated megakaryocytic human erythroleukemia cells revealed that RUNX1 regulates RAB31 via binding to its promoter. We investigated RUNX1 and RAB31 roles in endosomal dynamics using immunofluorescence staining for markers of early endosomes (EEs; early endosomal autoantigen 1) and late endosomes (CD63)/multivesicular bodies. Downregulation of RUNX1 or RAB31 (by small interfering RNA or CRISPR/Cas9) showed a striking enlargement of EEs, partially reversed by RAB31 reconstitution. This EE defect was observed in MKs differentiated from a patient-derived induced pluripotent stem cell line (RHD-iMKs). Studies using immunofluorescence staining showed that trafficking of 3 proteins with distinct roles (von Willebrand factor [VWF], a protein trafficked to α-granules; epidermal growth factor receptor; and mannose-6-phosphate) was impaired at the level of EE on downregulation of RAB31 or RUNX1. There was loss of plasma membrane VWF in RUNX1- and RAB31-deficient megakaryocytic human erythroleukemia cells and RHD-iMKs. These studies provide evidence that RAB31 is downregulated in RHD and regulates megakaryocytic vesicle trafficking of 3 major proteins with diverse biological roles. EE defect and impaired vesicle trafficking is a potential mechanism for the α-granule defects observed in RUNX1 deficiency.


Assuntos
Leucemia Eritroblástica Aguda , Megacariócitos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Receptores ErbB/metabolismo , Humanos , Megacariócitos/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Fator de von Willebrand/metabolismo
4.
Res Pract Thromb Haemost ; 5(5): e12563, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34278192

RESUMO

OBJECTIVE: Alterations in coagulation could mediate functional outcome in patients with hyperglycemia after acute ischemic stroke (AIS). We prospectively studied the effects of intensive versus standard glucose control on coagulation markers and their relationships to functional outcomes in patients with AIS. APPROACH: The Insights on Selected Procoagulation Markers and Outcomes in Stroke Trial measured the coagulation biomarkers whole blood tissue factor procoagulant activity (TFPCA); plasma factors VII (FVII), VIIa (FVIIa), and VIII (FVIII); thrombin-antithrombin (TAT) complex; D-dimer; tissue factor pathway inhibitor, and plasminogen activator inhibitor-1 (PAI-1) antigen in patients enrolled in the Stroke Hyperglycemia Insulin Network Effort trial of intensive versus standard glucose control on functional outcome at 3 months after AIS. Changes in biomarkers over time (from baseline ≈12 hours after stroke onset) to 48 hours, and changes in biomarkers between treatment groups, functional outcomes, and their interaction were analyzed by two-way analysis of variance. RESULTS: A total of 125 patients were included (57 in the intensive treatment group and 68 in the standard treatment group). The overall mean age was 66 years; 42% were women. Changes from baseline to 48 hours in coagulation markers were significantly different between treatment groups for TFPCA (P = 0.02) and PAI-1 (P = .04) and FVIIa (P = .04). Increases in FVIIa and decreases in FVIII were associated with favorable functional outcomes (P = .04 and .04, respectively). In the intensive treatment group, reductions in TFPCA and FVIII and increases in FVIIa were greater in patients with favorable than unfavorable outcomes (P = .02, 0.002, 0.03, respectively). In the standard treatment group, changes in FVII were different by functional outcome (P = .006). CONCLUSIONS: Intensive glucose control induced greater alterations in coagulation biomarkers than standard treatment, and these were associated with a favorable functional outcome at 3 months after AIS.

5.
J Thromb Haemost ; 19(7): 1709-1717, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33638931

RESUMO

BACKGROUND: Statins are widely used to lower lipids and reduce cardiovascular events. In vitro studies and small studies in patients with hyperlipidemias show statins inhibit tissue factor (TF) and blood coagulation mechanisms. We assessed the effects of simvastatin on TF and coagulation biomarkers in patients entered in STATCOPE, a multicenter, randomized, placebo-controlled trial of simvastatin (40 mg daily) versus placebo on exacerbation rates in patients with chronic obstructive pulmonary disease (COPD). METHODS: In 227 patients (114 simvastatin, 113 placebo; mean [± standard error of the mean] age 62 ± 0.53 years, 44.5% women) we measured (baseline, and 6 and 12 months): whole blood membrane TF-procoagulant activity (TF-PCA) and plasma factors VIIa, VII, VIII, fibrinogen, TF antigen, tissue factor pathway inhibitor (TFPI), thrombin-antithrombin complexes (TAT), and D-dimer. We excluded patients with diabetes, cardiovascular disease, and those taking or requiring a statin. RESULTS: In the statin group, there was a small increase in TF-PCA (from 25.18 ± 1.08 to 30.36 ± 1.10 U/ml; p = .03) over 12 months; factors VIIa and VIII, fibrinogen, TAT, and D-dimer did not change. Plasma TFPI (from 52.4 ± 1.75 to 44.7 ± 1.78 ng/ml; p < .0001) and FVIIC (1.23 ± 0.04 to 1.15 ± 0.03 U/ml; p = .03) decreased and correlated with total cholesterol levels. No changes in biomarkers were observed with placebo. CONCLUSIONS: In contrast to previous studies on statins, in COPD patients without diabetes, cardiovascular disease, or requiring a statin treatment, simvastatin (40 mg per day) did not decrease TF or factors VIIa and VIII, fibrinogen, TAT, or D-dimer. The decreases in TFPI and factor VII reflect the decrease in serum lipids.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Tromboplastina , Coagulação Sanguínea , Fator VIIa , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Sinvastatina/uso terapêutico
6.
J Biol Chem ; 294(10): 3618-3633, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30591585

RESUMO

Individuals who are infected with HIV-1 accumulate damage to cells and tissues (e.g. neurons) that are not directly infected by the virus. These include changes known as HIV-associated neurodegenerative disorder (HAND), leading to the loss of neuronal functions, including synaptic long-term potentiation (LTP). Several mechanisms have been proposed for HAND, including direct effects of viral proteins such as the Tat protein. Searching for the mechanisms involved, we found here that HIV-1 Tat inhibits E2F transcription factor 3 (E2F3), CAMP-responsive element-binding protein (CREB), and brain-derived neurotropic factor (BDNF) by up-regulating the microRNA miR-34a. These changes rendered murine neurons dysfunctional by promoting neurite retraction, and we also demonstrate that E2F3 is a specific target of miR-34a. Interestingly, bioinformatics analysis revealed the presence of an E2F3-binding site within the CREB promoter, which we validated with ChIP and transient transfection assays. Of note, luciferase reporter assays revealed that E2F3 up-regulates CREB expression and that Tat interferes with this up-regulation. Further, we show that miR-34a inhibition or E2F3 overexpression neutralizes Tat's effects and restores normal distribution of the synaptic protein synaptophysin, confirming that Tat alters these factors, leading to neurite retraction inhibition. Our results suggest that E2F3 is a key player in neuronal functions and may represent a good target for preventing the development of HAND.


Assuntos
Fator de Transcrição E2F3/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos , MicroRNAs/genética , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neurônios/metabolismo , Regiões Promotoras Genéticas/genética , Sinaptofisina/metabolismo
7.
Circulation ; 136(10): 927-939, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28676520

RESUMO

BACKGROUND: PCTP (phosphatidylcholine transfer protein) regulates the intermembrane transfer of phosphatidylcholine. Higher platelet PCTP expression is associated with increased platelet responses on activation of protease-activated receptor 4 thrombin receptors noted in black subjects compared with white subjects. Little is known about the regulation of platelet PCTP. Haplodeficiency of RUNX1, a major hematopoietic transcription factor, is associated with thrombocytopenia and impaired platelet responses on activation. Platelet expression profiling of a patient with a RUNX1 loss-of-function mutation revealed a 10-fold downregulation of the PCTP gene compared with healthy controls. METHODS: We pursued the hypothesis that PCTP is regulated by RUNX1 and that PCTP expression is correlated with cardiovascular events. We studied RUNX1 binding to the PCTP promoter using DNA-protein binding studies and human erythroleukemia cells and promoter activity using luciferase reporter studies. We assessed the relationship between RUNX1 and PCTP in peripheral blood RNA and PCTP and death or myocardial infarction in 2 separate patient cohorts (587 total patients) with cardiovascular disease. RESULTS: Platelet PCTP protein in the patient was reduced by ≈50%. DNA-protein binding studies showed RUNX1 binding to consensus sites in ≈1 kB of PCTP promoter. PCTP expression was increased with RUNX1 overexpression and reduced with RUNX1 knockdown in human erythroleukemia cells, indicating that PCTP is regulated by RUNX1. Studies in 2 cohorts of patients showed that RUNX1 expression in blood correlated with PCTP gene expression; PCTP expression was higher in black compared with white subjects and was associated with future death/myocardial infarction after adjustment for age, sex, and race (odds ratio, 2.05; 95% confidence interval 1.6-2.7; P<0.0001). RUNX1 expression is known to initiate at 2 alternative promoters, a distal P1 and a proximal P2 promoter. In patient cohorts, there were differential effects of RUNX1 isoforms on PCTP expression with a negative correlation in blood between RUNX1 expressed from the P1 promoter and PCTP expression. CONCLUSIONS: PCTP is a direct transcriptional target of RUNX1. PCTP expression is associated with death/myocardial infarction in patients with cardiovascular disease. RUNX1 regulation of PCTP may play a role in the pathogenesis of platelet-mediated cardiovascular events.


Assuntos
Plaquetas/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Immunoblotting/métodos , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fatores de Transcrição/genética , Linhagem Celular Tumoral , Estudos de Coortes , Biologia Computacional , Humanos , Muramidase , Fragmentos de Peptídeos , Proteínas de Transferência de Fosfolipídeos/genética , Transfecção
8.
Apoptosis ; 19(8): 1202-14, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24872081

RESUMO

Involvement of the human immunodeficiency virus type 1 (HIV-1) trans-activator of transcription (Tat) protein in neuronal deregulation and in the development of HIV-1 associated neurocognitive disorders (HAND) has been amply explored; however the mechanisms involved remain unclear. In search for the mechanisms, we demonstrated that Tat deregulates neuronal functions through a pathway that involved p73 and p53 pathway. We showed that Tat uses microRNA-196a (miR-196a) to deregulate the p73 pathway. Further, we found that the Abelson murine leukemia (c-Abl) phosphorylates p73 on tyrosine residue 99 (Tyr-99) in Tat-treated cells. Interestingly, Tat lost its ability to promote accumulation and phosphorylation of p73 in the presence of miR-196a mimic. Interestingly, accumulation of p73 did not lead to neuronal cell death by apoptosis as obtained by cell viability assay. Western blot analysis using antibodies directed against serine residues 807 and 811 of retinoblastoma (Rb) protein was also used to validate our data regarding lack of cell death. Hyperphosphorylation of RB (S807/811) is an indication of cell neuronal viability. These results highlight the key role played by p73 and microRNA in Tat-treated neurons leading to their deregulation and it deciphers mechanistically one of the pathways used by Tat to cause neuronal dysfunction that contributes to the development of HAND.


Assuntos
Transtornos Cognitivos/metabolismo , Infecções por HIV/metabolismo , HIV-1/fisiologia , MicroRNAs/metabolismo , Animais , Apoptose , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/virologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Infecções por HIV/complicações , Infecções por HIV/virologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
9.
Am J Pathol ; 184(3): 697-713, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24462663

RESUMO

We have previously identified osteoactivin (OA), encoded by Gpnmb, as an osteogenic factor that stimulates osteoblast differentiation in vitro. To elucidate the importance of OA in osteogenesis, we characterized the skeletal phenotype of a mouse model, DBA/2J (D2J) with a loss-of-function mutation in Gpnmb. Microtomography of D2J mice showed decreased trabecular mass, compared to that in wild-type mice [DBA/2J-Gpnmb(+)/SjJ (D2J/Gpnmb(+))]. Serum analysis showed decreases in OA and the bone-formation markers alkaline phosphatase and osteocalcin in D2J mice. Although D2J mice showed decreased osteoid and mineralization surfaces, their osteoblasts were increased in number, compared to D2J/Gpnmb(+) mice. We then examined the ability of D2J osteoblasts to differentiate in culture, where their differentiation and function were decreased, as evidenced by low alkaline phosphatase activity and matrix mineralization. Quantitative RT-PCR analyses confirmed the decreased expression of differentiation markers in D2J osteoblasts. In vitro, D2J osteoblasts proliferated and survived significantly less, compared to D2J/Gpnmb(+) osteoblasts. Next, we investigated whether mutant OA protein induces endoplasmic reticulum stress in D2J osteoblasts. Neither endoplasmic reticulum stress markers nor endoplasmic reticulum ultrastructure were altered in D2J osteoblasts. Finally, we assessed underlying mechanisms that might alter proliferation of D2J osteoblasts. Interestingly, TGF-ß receptors and Smad-2/3 phosphorylation were up-regulated in D2J osteoblasts, suggesting that OA contributes to TGF-ß signaling. These data confirm the anabolic role of OA in postnatal bone formation.


Assuntos
Proteínas do Olho/genética , Glicoproteínas de Membrana/genética , Osteoblastos/fisiologia , Osteocalcina/genética , Osteogênese/genética , Transdução de Sinais , Fosfatase Alcalina/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Diferenciação Celular/genética , Masculino , Camundongos , Camundongos Endogâmicos DBA , Mutação , Osteoblastos/citologia , Fenótipo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/metabolismo
10.
J Osteoporos ; 2013: 571418, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24286015

RESUMO

Increased life expectancy and the need for long-term antiretroviral therapy have brought new challenges to the clinical management of HIV-infected individuals. The prevalence of osteoporosis and fractures is increased in HIV-infected patients; thus optimal strategies for risk management and treatment in this group of patients need to be defined. Prevention of bone loss is an important component of HIV care as the HIV population grows older. Understanding the mechanisms by which HIV infection affects bone biology leading to osteoporosis is crucial to delineate potential adjuvant treatments. This review focuses on HIV-induced osteoporosis within the context of microRNAs (miRNAs) by reviewing first basic concepts of bone biology as well as current knowledge of the role of miRNAs in bone development. Evidence that HIV-associated osteoporosis is in part independent of therapies employed to treat HIV (HAART) is supported by cross-sectional and longitudinal studies and is the focus of this review.

11.
J Cell Physiol ; 227(1): 390-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21503878

RESUMO

Osteoactivin (OA) is required for the differentiation of osteoblast cells. OA expression is stimulated by bone morphogenetic protein-2 (BMP-2). BMP-2 recruits homeodomain transcription factors Dlx3, Dlx5, and Msx2 to selectively activate or repress transcription of osteogenic genes and hence tightly regulate their transcription during osteoblast differentiation. Considering the key roles of Dlx3, Dlx5, and Msx2 in osteoblast differentiation, here we hypothesize that homeodomain proteins regulate BMP-2-induced OA transcription during osteoblast differentiation. Four classical homeodomain binding sites were identified in the proximal 0.96 kb region of rat OA promoter. Deletions and mutagenesis studies of the OA promoter region indicated that all four homeodomain binding sites are crucial for BMP-2-induced OA promoter activity. Simultaneous disruption of homeodomain binding sites at -852 and -843 of the transcription start site of OA gene significantly decreased the BMP-2-induced OA transcription and inhibited binding of Dlx3, Dlx5, and Msx2 proteins to the OA promoter. Dlx3 and Dlx5 proteins were found to activate the OA transcription, whereas, Msx2 suppressed BMP-2-induced OA transcription. Using chromatin immunoprecipitation assays, we demonstrated that the OA promoter is predominantly occupied by Dlx3 and Dlx5 during the proliferation and matrix maturation stages of osteoblast differentiation, respectively. During the matrix mineralization stage, BMP-2 robustly enhanced the recruitment of Dlx5 and to a lesser extent of Dlx3 and Msx2 to the OA promoter region. Collectively, our results show that the BMP-2-induced OA transcription is differentially regulated by Dlx3, Dlx5, and Msx2 during osteoblast differentiation.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/genética , Proteínas de Homeodomínio/metabolismo , Glicoproteínas de Membrana/biossíntese , Osteoblastos/citologia , Fatores de Transcrição/metabolismo , Animais , Western Blotting , Proteína Morfogenética Óssea 2/genética , Células Cultivadas , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas de Homeodomínio/genética , Glicoproteínas de Membrana/genética , Regiões Promotoras Genéticas/genética , RNA Interferente Pequeno , Ratos , Fatores de Transcrição/genética , Transcrição Gênica , Ativação Transcricional/genética
12.
Thromb Res ; 129(6): 801-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21889790

RESUMO

Activated factor X (FXa) and thrombin can up-regulate gene expression of connective tissue growth factor (CTGF/CCN2) on fibroblasts. Since tissue factor (TF) is expressed on these cells, we hypothesized that they may assemble the prothrombinase complex leading to CTGF/CCN2 upregulation. In addition, the effect of thrombospondin-1 (TSP1) on this reaction was evaluated. Human foreskin fibroblasts were incubated with purified factor VII (FVII), factor X (FX), factor V (FV), prothrombin and calcium in the presence and absence of TSP1. Generation of FXa and of thrombin were assessed using chromogenic substrates. SMAD pathway phosphorylation was detected via Western-blot analysis. Pre-incubation of fibroblasts with FVII led to its auto-activation by cell-surface expressed TF, which in turn in the presence of FX, FVa, prothrombin and calcium led to FXa (9.7±0.8nM) and thrombin (7.9±0.04 U/mL×10-3) generation. Addition of TSP1 significantly enhanced thrombin (23.3±0.7 U/mL×10-3) but not FXa (8.5±0.6nM) generation. FXa and thrombin generation leads to upregulation of CTGF/CCN2. TSP1 alone upregulated CTGF/CCN2, an effect mediated via activation of transforming growth factor beta (TGFß) as shown by phosphorylation of the SMAD pathway, an event blunted by using a TGFß receptor I inhibitor (TGFßRI). FXa- and thrombin-induced upregulation of CTGF/CCN2 was not blocked by TGFßRI. In summary, assembly of the prothrombinase complex occurs on fibroblast's surface leading to serine proteases generation, an event enhanced by TSP1 and associated with CTGF/CCN2 upregulation. These mechanisms may play an important role in human diseases associated with fibrosis.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator V/metabolismo , Fator Xa/metabolismo , Fibroblastos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular , Fator de Crescimento do Tecido Conjuntivo/biossíntese , Fator de Crescimento do Tecido Conjuntivo/genética , Fator V/genética , Fator VII/metabolismo , Fator Xa/genética , Fibroblastos/enzimologia , Prepúcio do Pênis/citologia , Expressão Gênica , Humanos , Masculino , Trombina/biossíntese , Tromboplastina/biossíntese , Tromboplastina/genética , Tromboplastina/metabolismo , Fator de Crescimento Transformador beta/metabolismo
13.
J Health Care Poor Underserved ; 22(4): 1144-50, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22080699

RESUMO

This Report from the Field documents a series of interventions developed by Temple University Health System and School of Medicine through participation in the RWJF initiative entitled Hablamos Juntos. The report delineates outcomes to date demonstrating that these interventions have met the challenge of improving patient provider communication for Latinos.


Assuntos
Barreiras de Comunicação , Comunicação , Multilinguismo , Relações Profissional-Paciente , Credenciamento , Currículo , Educação de Graduação em Medicina/métodos , Avaliação Educacional , Hispânico ou Latino , Hospitais Universitários , Humanos , Philadelphia , Projetos Piloto , Desenvolvimento de Programas
14.
J Cell Physiol ; 226(11): 2943-52, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21302290

RESUMO

Current osteoinductive protein therapy utilizes bolus administration of large doses of bone morphogenetic proteins (BMPs), which is costly, and may not replicate normal bone healing. The limited in vivo biologic activity of BMPs requires the investigation of growth factors that may enhance this activity. In this study, we utilized the C3H10T1/2 murine mesenchymal stem cell line to test the hypotheses that osteoactivin (OA) has comparable osteoinductive effects to bone morphogenetic protein-2 (BMP-2), and that sustained administration of either growth factor would result in increased osteoblastic differentiation as compared to bolus administration. Sustained release biodegradable hydrogels were designed, and C3H10T1/2 cells were grown on hydrogels loaded with BMP-2 or OA. Controls were grown on unloaded hydrogels, and positive controls were exposed to bolus growth factor administration. Cells were harvested at several time points to assess osteoblastic differentiation. Alkaline phosphatase (ALP) staining and activity, and gene expression of ALP and osteocalcin were assessed. Treatment with OA or BMP-2 resulted in comparable effects on osteoblastic marker expression. However, cells grown on hydrogels demonstrated osteoblastic differentiation that was not as robust as cells treated with bolus administration. This study shows that OA has comparable effects to BMP-2 on osteoblastic differentiation using both bolus administration and continuous release, and that bolus administration of OA has a more profound effect than administration using hydrogels for sustained release. This study will lead to a better understanding of appropriate delivery methods of osteogenic growth factors like OA for repair of fractures and segmental bone defects.


Assuntos
Proteína Morfogenética Óssea 2/administração & dosagem , Diferenciação Celular/efeitos dos fármacos , Proteínas do Olho/administração & dosagem , Glicoproteínas de Membrana/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Fosfatase Alcalina/biossíntese , Fosfatase Alcalina/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Preparações de Ação Retardada , Expressão Gênica/efeitos dos fármacos , Hidrogel de Polietilenoglicol-Dimetacrilato/administração & dosagem , Células-Tronco Mesenquimais/citologia , Camundongos , Osteocalcina/biossíntese , Osteocalcina/genética
15.
Crit Rev Eukaryot Gene Expr ; 20(4): 341-57, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21395506

RESUMO

Osteoactivin (OA) protein was discovered in bone cells a decade ago. Recent literature suggests that osteoactivin is crucial for the differentiation and functioning of different cell types, including bone-forming osteoblasts and bone-resorbing osteoclast cells. Here, we review the literature to date on various regulatory functions of osteoactivin, as well as its discovery, structure, expression, and function in different tissues and cells. The transcriptional regulation of osteoactivin and its mechanism of action in normal and diseased conditions with special emphasis on bone are also covered in this review. In addition, we touch on the therapeutic potential of osteoactivin in cancer and bone diseases.


Assuntos
Osso e Ossos/fisiologia , Proteínas do Olho/fisiologia , Glicoproteínas de Membrana/fisiologia , Animais , Proteínas do Olho/química , Proteínas do Olho/genética , Humanos , Inflamação/fisiopatologia , Fígado/fisiologia , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Músculo Esquelético/fisiologia , Neoplasias/fisiopatologia , Processamento de Proteína Pós-Traducional , Homologia Estrutural de Proteína
16.
Curr Vasc Pharmacol ; 8(3): 338-43, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19485899

RESUMO

Biologic therapy for rheumatoid arthritis (RA) targets specific molecules that mediate and sustain the clinical manifestations of this complex illness. Compared with the general population, patients with RA die prematurely, in part due to associated cardiovascular disease. Even though the mechanisms by which premature atherosclerosis develops in RA is unknown, chronic inflammation may play a major role. This review connects current knowledge of the pathophysiology of RA with data available in the literature related to thrombospondin-1 (TSP1), transforming growth factor beta (TGFbeta and connective tissue growth factor (CTGF) and their relationship with cardiovascular disease in RA. The TSP1/TGFbeta/CTGF axis may contribute in the pro-inflammatory and pro-atherogenic state in patients affected with RA. In fact, increased TSP1 plasma levels are found in patients of RA. TGFbeta is activated by TSP1 through a non-enzymatic mechanism and is constitutively overexpressed by synovial fibroblasts from RA patients. Activation of TGFbeta pathway in synovial fibroblasts and other cells including neutrophils leads to downstream upregulation of CTGF. Overexpression of CTGF is associated with angiogenesis, fibrosis, atherosclerotic blood vessels and erosive arthritis lesions. Recent RA therapies emphasize the need for aggressive control of the activity of the disease to prevent premature atherosclerosis in RA patients. The complexity and heterogeneity of RA as judged by response to a wide spectrum of treatments mandates the elucidation of unknown pro-inflammatory pathways playing a major role in this disease. The TSP1/TGFbeta/CTFG axis represents one of these pro-inflammatory pathways that may result in the development of promising therapeutic strategies to prevent chronic inflammation and thus premature atherosclerosis in RA.


Assuntos
Antirreumáticos/metabolismo , Artrite Reumatoide/metabolismo , Fator de Crescimento do Tecido Conjuntivo/fisiologia , Sistemas de Liberação de Medicamentos/tendências , Trombospondina 1/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Animais , Antirreumáticos/administração & dosagem , Artrite Reumatoide/complicações , Artrite Reumatoide/tratamento farmacológico , Aterosclerose/complicações , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Trombospondina 1/metabolismo , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...