Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 204(11): 2961-2972, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32284333

RESUMO

CMV has been proposed to play a role in cancer progression and invasiveness. However, CMV has been increasingly studied as a cancer vaccine vector, and multiple groups, including ours, have reported that the virus can drive antitumor immunity in certain models. Our previous work revealed that intratumoral injections of wild-type murine CMV (MCMV) into B16-F0 melanomas caused tumor growth delay in part by using a viral chemokine to recruit macrophages that were subsequently infected. We now show that MCMV acts as a STING agonist in the tumor. MCMV infection of tumors in STING-deficient mice resulted in normal recruitment of macrophages to the tumor, but poor recruitment of CD8+ T cells, reduced production of inflammatory cytokines and chemokines, and no delay in tumor growth. In vitro, expression of type I IFN was dependent on both STING and the type I IFNR. Moreover, type I IFN alone was sufficient to induce cytokine and chemokine production by macrophages and B16 tumor cells, suggesting that the major role for STING activation was to produce type I IFN. Critically, viral infection of wild-type macrophages alone was sufficient to restore tumor growth delay in STING-deficient animals. Overall, these data show that MCMV infection and sensing in tumor-associated macrophages through STING signaling is sufficient to promote antitumor immune responses in the B16-F0 melanoma model.


Assuntos
Infecções por Herpesviridae/imunologia , Melanoma/imunologia , Proteínas de Membrana/metabolismo , Muromegalovirus/fisiologia , Neoplasias Cutâneas/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Movimento Celular , Modelos Animais de Doenças , Humanos , Imunidade/genética , Interferon Tipo I/metabolismo , Melanoma/virologia , Melanoma Experimental , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Cutâneas/virologia , Carga Tumoral , Microambiente Tumoral
2.
J Virol ; 93(20)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31375579

RESUMO

Cytomegalovirus (CMV) is a ubiquitous betaherpesvirus that infects many different cell types. Human CMV (HCMV) has been found in several solid tumors, and it has been hypothesized that it may promote cellular transformation or exacerbate tumor growth. Paradoxically, in some experimental situations, murine CMV (MCMV) infection delays tumor growth. We previously showed that wild-type MCMV delayed the growth of poorly immunogenic B16 melanomas via an undefined mechanism. Here, we show that MCMV delayed the growth of these immunologically "cold" tumors by recruiting and modulating tumor-associated macrophages. Depletion of monocytic phagocytes with clodronate completely prevented MCMV from delaying tumor growth. Mechanistically, our data suggest that MCMV recruits new macrophages to the tumor via the virus-encoded chemokine MCK2, and viruses lacking this chemokine were unable to delay tumor growth. Moreover, MCMV infection of macrophages drove them toward a proinflammatory (M1)-like state. Importantly, adaptive immune responses were also necessary for MCMV to delay tumor growth as the effect was substantially blunted in Rag-deficient animals. However, viral spread was not needed and a spread-defective MCMV strain was equally effective. In most mice, the antitumor effect of MCMV was transient. Although the recruited macrophages persisted, tumor regrowth correlated with a loss of viral activity in the tumor. However, an additional round of MCMV infection further delayed tumor growth, suggesting that tumor growth delay was dependent on active viral infection. Together, our results suggest that MCMV infection delayed the growth of an immunologically cold tumor by recruiting and modulating macrophages in order to promote anti-tumor immune responses.IMPORTANCE Cytomegalovirus (CMV) is an exciting new platform for vaccines and cancer therapy. Although CMV may delay tumor growth in some settings, there is also evidence that CMV may promote cancer development and progression. Thus, defining the impact of CMV on tumors is critical. Using a mouse model of melanoma, we previously found that murine CMV (MCMV) delayed tumor growth and activated tumor-specific immunity although the mechanism was unclear. We now show that MCMV delayed tumor growth through a mechanism that required monocytic phagocytes and a viral chemokine that recruited macrophages to the tumor. Furthermore, MCMV infection altered the functional state of macrophages. Although the effects of MCMV on tumor growth were transient, we found that repeated MCMV injections sustained the antitumor effect, suggesting that active viral infection was needed. Thus, MCMV altered tumor growth by actively recruiting macrophages to the tumor, where they were modulated to promote antitumor immunity.


Assuntos
Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/imunologia , Melanoma/imunologia , Melanoma/patologia , Muromegalovirus/imunologia , Fagócitos/imunologia , Fagócitos/patologia , Animais , Melanoma/complicações , Melanoma/mortalidade , Melanoma Experimental , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Taxa de Sobrevida , Carga Tumoral
3.
Nat Commun ; 10(1): 705, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30741936

RESUMO

TRADD is an adaptor for TNFR1-induced apoptosis and NFκB activation. However, TRADD-deficient mice undergo normal development and contain normal lymphoid populations, which contrasts with an embryonic defect in mice lacking FADD, the shared adaptor mediating apoptosis. Recent studies indicate FADD suppresses embryonic necroptosis mediated by RIPK1. TRADD was suggested to also mediate necroptosis. Here we report that targeting TRADD fails to rescue Fadd-/- embryos from necroptosis, and ablation of TRADD rescues Ripk1-/- mice from perinatal lethality when RIPK3-mediated necroptosis is disabled. The resulting Ripk1-/-Ripk3-/-Tradd-/- mice survive until early adulthood, but die thereafter. A single allele of Tradd is optimal for survival of Ripk1-/-Ripk3-/-Tradd+/- mice. We show that TRADD plays a more dominating role in NFκB-signaling than RIPK1. While RIPK1 protects thymocytes from TNFα-induced apoptosis, TRADD promotes this process. The data demonstrate that TRADD is critical in perinatal and adult mice lacking RIPK1 and RIPK3, which has not been appreciated in prior studies.


Assuntos
Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína de Domínio de Morte Associada a Receptor de TNF/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 8/genética , Caspase 8/metabolismo , Morte Celular , Proliferação de Células/efeitos dos fármacos , Proteína de Domínio de Morte Associada a Fas/metabolismo , Fibroblastos , Deleção de Genes , Regulação da Expressão Gênica , Intestinos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B , Necrose , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/farmacologia , Transdução de Sinais , Análise de Sobrevida , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Proteína de Domínio de Morte Associada a Receptor de TNF/genética , Proteína de Domínio de Morte Associada a Receptor de TNF/farmacologia , Timócitos/efeitos dos fármacos , Transcriptoma , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...